Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Heliyon ; 10(11): e31968, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868008

RESUMO

Objectives: The lymphotactin receptor X-C motif chemokine receptor 1 (XCR1) is an essential member of the chemokine receptor family and is related to tumor development and progression. Nevertheless, further investigation is required to explore its expression patterns, prognostic values, and functions related to target or immune therapies in patients with hepatocellular carcinoma (HCC). Materials and methods: The differential expression patterns of XCR1 and its prognostic influences were performed through The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) databases. Subsequently, immunohistochemistry (IHC) staining and univariate and multivariate Cox regressions were performed to validate the prognostic values in different subgroups. Furthermore, the potential roles of XCR1 in predicting target and immune therapeutic responses were also investigated. Results: Increased expression level of XCR1 was associated with favorable overall survival (OS) and recurrence-free survival (RFS). Subgroup analysis revealed that a high expression level of XCR1 or positive immune cell proportion score (iCPS) were associated with favorable OS in the HCC patients with favorable tumor characteristics. In addition, the enhanced XCR1 expression was associated with the tumor environment scores, immune cell infiltration levels, and the expression levels of immune checkpoint genes. Further analysis revealed that improved expression of XCR1 was linked to better OS and RFS in HCC patients who received sorafenib. Conclusion: This study identified that XCR1 is a valuable prognostic biomarker in the HCC population, especially in those with favorable tumor characteristics. The combination of iCPS status and BCLC status has a synergistic effect on stratifying patients' OS and RFS. Further analyses showed that XCR1 has the potential ability to predict treatment responses to sorafenib and immune-based therapies.

2.
EClinicalMedicine ; 72: 102622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745965

RESUMO

Background: The role of transarterial chemoembolization (TACE) in the treatment of advanced hepatocellular carcinoma (HCC) is unconfirmed. This study aimed to assess the efficacy and safety of immune checkpoint inhibitors (ICIs) plus anti-vascular endothelial growth factor (anti-VEGF) antibody/tyrosine kinase inhibitors (TKIs) with or without TACE as first-line treatment for advanced HCC. Methods: This nationwide, multicenter, retrospective cohort study included advanced HCC patients receiving either TACE with ICIs plus anti-VEGF antibody/TKIs (TACE-ICI-VEGF) or only ICIs plus anti-VEGF antibody/TKIs (ICI-VEGF) from January 2018 to December 2022. The study design followed the target trial emulation framework with stabilized inverse probability of treatment weighting (sIPTW) to minimize biases. The primary outcome was overall survival (OS). Secondary outcomes included progression-free survival (PFS), objective response rate (ORR), and safety. The study is registered with ClinicalTrials.gov, NCT05332821. Findings: Among 1244 patients included in the analysis, 802 (64.5%) patients received TACE-ICI-VEGF treatment, and 442 (35.5%) patients received ICI-VEGF treatment. The median follow-up time was 21.1 months and 20.6 months, respectively. Post-application of sIPTW, baseline characteristics were well-balanced between the two groups. TACE-ICI-VEGF group exhibited a significantly improved median OS (22.6 months [95% CI: 21.2-23.9] vs 15.9 months [14.9-17.8]; P < 0.0001; adjusted hazard ratio [aHR] 0.63 [95% CI: 0.53-0.75]). Median PFS was also longer in TACE-ICI-VEGF group (9.9 months [9.1-10.6] vs 7.4 months [6.7-8.5]; P < 0.0001; aHR 0.74 [0.65-0.85]) per Response Evaluation Criteria in Solid Tumours (RECIST) version 1.1. A higher ORR was observed in TACE-ICI-VEGF group, by either RECIST v1.1 or modified RECIST (41.2% vs 22.9%, P < 0.0001; 47.3% vs 29.7%, P < 0.0001). Grade ≥3 adverse events occurred in 178 patients (22.2%) in TACE-ICI-VEGF group and 80 patients (18.1%) in ICI-VEGF group. Interpretation: This multicenter study supports the use of TACE combined with ICIs and anti-VEGF antibody/TKIs as first-line treatment for advanced HCC, demonstrating an acceptable safety profile. Funding: National Natural Science Foundation of China, National Key Research and Development Program of China, Jiangsu Provincial Medical Innovation Center, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, and Nanjing Life Health Science and Technology Project.

3.
Cardiovasc Intervent Radiol ; 47(3): 325-336, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38413420

RESUMO

PURPOSE: While the role of drug-eluting beads transarterial chemoembolization (DEB-TACE) for hepatocellular carcinoma (HCC) is established, questions regarding appropriate bead size for use in patients remain. This trial evaluated the effectiveness and safety of DEB-TACE using small-size (≤ 100 µm) microspheres loaded with epirubicin. MATERIALS AND METHODS: This prospective, single-arm, multicenter study enrolled patients diagnosed with HCC who underwent DEB-TACE using 40 (range, 30-50), 75 (range, 60-90), or 100 (range, 75-125) µm epirubicin-loaded microspheres (TANDEM microspheres, Varian Medical). Bead size was at the discretion of treating physicians and based on tumor size and/or vascular structure. The primary outcome measure was 6-month objective response rate (ORR). Secondary outcome measures were 30-day and 3-month ORR, time to tumor progression and extrahepatic spread, proportion of progression-free survival and overall survival (OS) at one year, and incidence of treatment-associated adverse events. RESULTS: Data from 108 patients from ten centers was analyzed. Six-month ORR was 73.3 and 71.3% based on European association for the study of the liver (EASL) and modified response evaluation criteria in solid tumors (mRECIST) criteria, respectively. Thirty-day ORR was 79.6% for both EASL and mRECIST criteria with 3-month ORR being 80.0 and 81.0%, respectively, for each criteria. One-year PPF and OS rate were 60.3 and 94.3%. There was a total of 30 SAEs reported to be likely to definitely associated with microsphere (n = 9), epirubicin (n = 9), or procedure (n = 12) with none resulting in death. CONCLUSION: DEB-TACE using epirubicin-loaded small-sized (≤ 100 µm) microspheres demonstrates promising local tumor control and acceptable safety in patients with HCC. TRIAL REGISTRATION: Clinicaltrials.gov NCT03113955; registered April 14, 2017. Trial Registration Clinicaltrials.gov NCT03113955; registered April 14, 2017. LEVEL OF EVIDENCE: 2, Prospective, Non-randomized, Single-arm, study.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Epirubicina , Neoplasias Hepáticas/patologia , Microesferas , Estudos Prospectivos , Resultado do Tratamento , Quimioembolização Terapêutica/métodos , Doxorrubicina , Estudos Retrospectivos
4.
Liver Int ; 44(4): 894-906, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263714

RESUMO

BACKGROUND & AIMS: We aimed to develop a Transformer-based deep learning (DL) network for prognostic stratification in hepatocellular carcinoma (HCC) patients undergoing RFA. METHODS: A Swin Transformer DL network was trained to establish associations between magnetic resonance imaging (MRI) datasets and the ground truth of microvascular invasion (MVI) based on 696 surgical resection (SR) patients with solitary HCC ≤3 cm, and was validated in an external cohort (n = 180). The multiphase MRI-based DL risk outputs using an optimal threshold of .5 was employed as a MVI classifier for prognosis stratification in the RFA cohort (n = 180). RESULTS: Over 90% of all enrolled patients exhibited hepatitis B virus infection. Liver cirrhosis was significantly more prevalent in the RFA cohort compared to the SR cohort (72.2% vs. 44.1%, p < .001). The MVI risk outputs exhibited good performance (area under the curve values = .938 and .883) for predicting MVI in the training and validation cohort, respectively. The RFA patients at high risk of MVI classified by the MVI classifier demonstrated significantly lower recurrence-free survival (RFS) and overall survival rates at 1, 3 and 5 years compared to those classified as low risk (p < .001). Multivariate cox regression modelling of a-fetoprotein > 20 ng/mL [hazard ratio (HR) = 1.53; 95% confidence interval (95% CI): 1.02-2.33, p = .047], high risk of MVI (HR = 3.76; 95% CI: 2.40-5.88, p < .001) and unfavourable tumour location (HR = 2.15; 95% CI: 1.40-3.29, p = .001) yielded a c-index of .731 (bootstrapped 95% CI: .667-.778) for evaluating RFS after RFA. Among the three risk factors, MVI was the most powerful predictor for intrahepatic distance recurrence. CONCLUSIONS: The proposed MVI classifier can serve as a valuable imaging biomarker for prognostic stratification in early-stage HCC patients undergoing RFA.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ablação por Radiofrequência , Humanos , Prognóstico , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Invasividade Neoplásica
5.
Acad Radiol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38052672

RESUMO

RATIONALE AND OBJECTIVES: To identify CT features for distinguishing grade 1 (G1)/grade 2 (G2) from grade 3 (G3) pancreatic neuroendocrine tumors (PNETs) using different machine learning (ML) methods. MATERIALS AND METHODS: A total of 147 patients with 155 lesions confirmed by pathology were retrospectively included. Clinical-demographic and radiological CT features was collected. The entire cohort was separated into training and validation groups at a 7:3 ratio. Least absolute shrinkage and selection operator (LASSO) algorithm and principal component analysis (PCA) were used to select features. Three ML methods, namely logistic regression (LR), support vector machine (SVM), and K-nearest neighbor (KNN) were used to build a differential model. Receiver operating characteristic (ROC) curves and precision-recall curves for each ML method were generated. The area under the curve (AUC), accuracy rate, sensitivity, and specificity were calculated. RESULTS: G3 PNETs were more likely to present with invasive behaviors and lower enhancement than G1/G2 PNETs. The LR classifier yielded the highest AUC of 0.964 (95% confidence interval [CI]: 0.930, 0.972), with 95.4% accuracy rate, 95.7% sensitivity, and 92.9% specificity, followed by SVM (AUC: 0.957) and KNN (AUC: 0.893) in the training group. In the validation group, the SVM classier reached the highest AUC of 0.952 (95% CI: 0.860, 0.981), with 91.5% accuracy rate, 97.3% sensitivity, and 70% specificity, followed by LR (AUC: 0.949) and KNN (AUC: 0.923). CONCLUSIONS: The LR and SVM classifiers had the best performance in the training group and validation group, respectively. ML method could be helpful in differentiating between G1/G2 and G3 PNETs.

6.
Front Immunol ; 14: 1238667, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37942328

RESUMO

Purpose: This multicenter, open-label, phase Ib/II study aimed to assess the efficacy and safety of cadonilimab, a humanized, tetravalent, bispecific antibody plus lenvatinib in first-line treatment of advanced hepatocellular carcinoma (aHCC). Methods: Patients with histologically confirmed aHCC were included to receive either 6 mg/kg cadonilimab every 2 weeks plus lenvatinib (cohort A) or 15 mg/kg cadonilimab every 3 weeks plus lenvatinib (cohort B). The primary endpoint was objective response rate (ORR) by RECIST v1.1, while the secondary endpoints were safety, progression-free survival (PFS), overall survival (OS), disease control rate (DCR), duration of response (DoR), and time to response (TTR). Results: A total of 59 patients were enrolled (31 in cohort A and 28 in cohort B). The median follow-up time was 27.4 months as of the data cutoff date (July 28, 2023). The ORR in cohort A was 35.5% (95% CI: 19.2, 54.6) and that in cohort B was 35.7% (95% CI: 18.6, 55.9), and the median DoR was 13.6 months (95% CI: 4.14, NE) and 13.67 months (95% CI: 3.52, NE), respectively. The median PFS was 8.6 months (95% CI: 5.2, 15.2) and 9.8 months (95% CI: 6.9, 15.2), respectively. The median OS was 27.1 months (95% C: 15.7, NE) for cohort A, while it was not reached for cohort B. Grade ≥ 3 treatment-related adverse events (TRAEs) were reported in 66.1% of patients, with serious TRAEs occurring in 39.0% of cases. Decreased platelet count (47.5%), proteinuria (45.8%), hypertension (44.1%), and white blood cell count (44.1%) were the most common TRAEs. Conclusion: This novel combination therapy showed promising efficacy and manageable toxicity that could provide an option in first-line setting of aHCC. Clinical Trial Registration: [www.ClinicalTrials.gov], NCT04444167.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Terapia Combinada , Empatia , Neoplasias Hepáticas/tratamento farmacológico
7.
J Mater Chem B ; 11(40): 9666-9675, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37779509

RESUMO

Non-specific adsorption of bioprobes based on surface-enhanced Raman spectroscopy (SERS) technology inevitably endows white blood cells (WBC) in the peripheral blood with Raman signals, which greatly interfere the identification accuracy of circulating tumor cells (CTCs). In this study, an innovative strategy was proposed to effectively identify CTCs by using SERS technology assisted by a receiver operating characteristic (ROC) curve. Firstly, a magnetic Fe3O4-Au complex SERS bioprobe was developed, which could effectively capture the triple negative breast cancer (TNBC) cells and endow the tumor cells with distinct SERS signals. Then, the ROC curve obtained based on the comparison of SERS intensity of TNBC cells and WBC was used to construct a tumor cell identification model. The merit of the model was that the detection sensitivity and specificity could be intelligently switched according to different identification purposes such as accurate diagnosis or preliminary screening of tumor cells. Finally, the difunctional recognition ability of the model for accurate diagnosis and preliminary screening of tumor cells was further validated by using the healthy human blood added with TNBC cells and blood samples of real tumor patients. This novel difunctional identification strategy provides a new perspective for identification of CTCs based on the SERS technology.


Assuntos
Técnicas Biossensoriais , Células Neoplásicas Circulantes , Neoplasias de Mama Triplo Negativas , Humanos , Células Neoplásicas Circulantes/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico , Análise Espectral Raman/métodos , Prata/química
8.
ACS Appl Mater Interfaces ; 15(38): 44773-44785, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37721368

RESUMO

Supramolecular self-assembly has gained increasing attention to construct multicomponent drug delivery systems for cancer diagnosis and therapy. Despite that these self-assembled nanosystems present surprising properties beyond that of each subcomponent, the spontaneous nature of co-self-assembly causes significant difficulties in control of the synthesis process and consequently leads to unsatisfactory influences in downstream applications. Hence, we utlized an in situ dynamic covalent reaction based on thiol-disulfide exchange to slowly produce disulfide macrocycles, which subsequently triggered the co-self-assembly of an anticancer drug (doxorubicin, DOX) and a magnetic resonance imaging (MRI) contrast agent of ultrasmall iron oxide nanoparticles (IO NPs). It showed concentration regulation of macrocyclic disulfides, DOX, and IO NPs by a dynamic covalent self-assembly (DCS) strategy, resulting in a stable codelivery nanosystem with high drug loading efficiency of 37.36%. More importantly, disulfide macrocycles in the codelivery system could be reduced and broken by glutathione (GSH) in tumor cells, thus leading to disassembly of nanostructures and intellgent release of drugs. These stimuli-responsive performances have been investigated via morphologies and molecular structures, revealing greatly enhanced dual-modal MRI abilities and smart drug release under the trigger of GSH. Moreover, the codelivery system conjugated with a targeting molecule of cyclic Arg-Gly-Asp (cRGD) exhibited significant biocompatibility, MR imaging, and chemotherapeutic anticancer effect in vitro and in vivo. These results indicated that in situ dynamic covalent chemistry enhanced the control over co-self-assembly and paved the way to develop more potential drug delivery systems.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Dissulfetos/química , Nanopartículas/química , Antineoplásicos/química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Imageamento por Ressonância Magnética , Glutationa , Meios de Contraste/uso terapêutico
9.
Dose Response ; 21(3): 15593258231187348, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424703

RESUMO

Objectives: To investigate the potential mechanisms of 125I seed implantation therapeutic treatment on inactivating the VEGFR2/PI3K/AKT pathway in cholangiocarcinoma. Methods: The human cholangiocarcinoma cell lines HCCC-9810 and HuCCT1 were purchased for in vitro studies. The BALB/c nude mice were obtained for in vivo studies. The proliferation of cells was detected by CCK-8, colony formation, and BrdU staining. The migration and invasion of cells were determined by wound healing assay and Transwell assay, respectively. Hematoxylin and eosin staining was utilized for histological evaluation. Protein expression was determined by western blotting and immunohistochemistry. Results: Compared with the control group, .6 mCi group and .8 mCi group inhibited cholangiocarcinoma cells proliferation, invasion, migration, and promoted apoptosis, the protein expression of p-VEGFR2, VEGFR2, PI3K, p-AKT/AKT, cyclin B1, cyclin A, CDK1, and Bcl-2 was decreased. Similar results were obtained from in vitro experiments. However, when VEGF is overexpressed, the inhibitory effect of .8 mCi was partially significantly reversed on cholangiocarcinoma cells. The in vivo studies further confirmed the inhibitory effects of .6 mCi group and .8 mCi group on cholangiocarcinoma. Conclusion: 125I seed irradiation could inhibit cholangiocarcinoma cells proliferation, migration, and invasion and promote apoptosis through inactivation of the VEGFR2/PI3K/AKT signaling pathway.

10.
Liver Cancer ; 12(2): 116-128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37325495

RESUMO

Introduction: Current treatments for patients with previously treated advanced hepatocellular carcinoma (HCC) provide modest survival benefits. We evaluated the safety and antitumor activity of serplulimab, an anti-PD-1 antibody, plus the bevacizumab biosimilar HLX04 in this patient population. Methods: In this open-label, multicenter, phase 2 study in China, patients with advanced HCC who failed prior systemic therapy received serplulimab 3 mg/kg plus HLX04 5 mg/kg (group A) or 10 mg/kg (group B) intravenously every 2 weeks. The primary endpoint was safety. Results: As of April 8, 2021, 20 and 21 patients were enrolled into groups A and B, and they had received a median of 7 and 11 treatment cycles, respectively. Grade ≥3 treatment-emergent adverse events were reported by 14 (70.0%) patients in group A and 12 (57.1%) in group B. Most immune-related adverse events were grade ≤3. The objective response rate was 30.0% (95% confidence interval [CI], 11.9-54.3) in group A and 14.3% (95% CI, 3.0-36.3) in group B. Median duration of response was not reached (95% CI, 3.3-not evaluable [NE]) in group A and was 9.0 months (95% CI, 7.9-NE) in group B. Median progression-free survival was 2.2 months (95% CI, 1.4-5.5) and 4.1 months (95% CI, 1.5-NE), and median overall survival was 11.6 months (95% CI, 6.4-NE) and 14.3 months (95% CI, 8.2-NE) in groups A and B, respectively. Conclusion: Serplulimab plus HLX04 showed a manageable safety profile and promising antitumor activity in patients with previously treated advanced HCC.

11.
APL Bioeng ; 7(2): 026106, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37274628

RESUMO

The efficiency of immunotherapy for triple-negative breast cancer (TNBC) is relatively low due to the difficulty in accurately detecting immune checkpoints. The detection of TNBC-related programmed cell death ligand-1 (PD-L1) expression is important to guide immunotherapy and improve treatment efficiency. Surface-enhanced Raman spectroscopy (SERS) and magnetic resonance (MR) imaging exhibit great potential for early TNBC diagnosis. SERS, an optical imaging mode, has the advantages of high detection sensitivity, good spatial resolution, and "fingerprint" spectral characteristics; however, the shallow detection penetration of SERS bioprobes limits its application in vivo. MR has the advantages of allowing deep penetration with no radiation; however, its spatial resolution needs to be improved. SERS and MR have complementary imaging features for tumor marker detection. In this study, gold nanorod and ultrasmall iron oxide nanoparticle composites were developed as dual-modal bioprobes for SERS-MRI to detect PD-L1 expression. Anti-PD-L1 (aPD-L1) was utilized to improve the targeting ability and specificity of PD-L1 expression detection. TNBC cells expressing PD-L1 were accurately detected via the SERS imaging mode in vitro, which can image at the single-cell level. In addition, bioprobe accumulation in PD-L1 expression-related tumor-bearing mice was simply and dynamically monitored and analyzed in vivo using MR and SERS. To the best of our knowledge, this is the first time a SERS-MRI dual-modal bioprobe combined with a PD-L1 antibody has been successfully used to detect PD-L1 expression in TNBC. This work paves the way for the design of high-performance bioprobe-based contrast agents for the clinical immunotherapy of TNBC.

12.
Acta Biomater ; 167: 534-550, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37302734

RESUMO

Currently, the treatment of triple-negative breast cancer (TNBC) is limited by the special pathological characteristics of this disease. In recent years, photodynamic therapy (PDT) has created new hope for the treatment of TNBC. Moreover, PDT can induce immunogenic cell death (ICD) and improve tumor immunogenicity. However, even though PDT can improve the immunogenicity of TNBC, the inhibitory immune microenvironment of TNBC still weakens the antitumor immune response. Therefore, we used the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by TNBC cells to improve the tumor immune microenvironment and enhance antitumor immunity. In addition, bone mesenchymal stem cell (BMSC)-derived sEVs have good biological safety and a strong drug loading capacity, which can effectively improve the efficiency of drug delivery. In this study, we first obtained primary BMSCs and sEVs, and then the photosensitizers Ce6 and GW4869 were loaded into the sEVs by electroporation to produce immunomodulatory photosensitive nanovesicles (Ce6-GW4869/sEVs). When administered to TNBC cells or orthotopic TNBC models, these photosensitive sEVs could specifically target TNBC and improve the tumor immune microenvironment. Moreover, PDT combined with GW4869-based therapy showed a potent synergistic antitumor effect mediated by direct killing of TNBC and activation of antitumor immunity. Here, we designed photosensitive sEVs that could target TNBC and regulate the tumor immune microenvironment, providing a potential approach for improving the effectiveness of TNBC treatment. STATEMENT OF SIGNIFICANCE: We designed an immunomodulatory photosensitive nanovesicle (Ce6-GW4869/sEVs) with the photosensitizer Ce6 to achieve photodynamic therapy and the neutral sphingomyelinase inhibitor GW4869 to inhibit the secretion of small extracellular vesicles (sEVs) by triple-negative breast cancer (TNBC) cells to improve the tumor immune microenvironment and enhance antitumor immunity. In this study, the immunomodulatory photosensitive nanovesicle could target TNBC cells and regulate the tumor immune microenvironment, thus providing a potential approach for improving the treatment effect in TNBC. We found that the reduction in tumor sEVs secretion induced by GW4869 improved the tumor-suppressive immune microenvironment. Moreover, similar therapeutic strategies can also be applied in other kinds of tumors, especially immunosuppressive tumors, which is of great value for the clinical translation of tumor immunotherapy.


Assuntos
Vesículas Extracelulares , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Esfingomielina Fosfodiesterase , Compostos de Anilina , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Esterases , Microambiente Tumoral , Linhagem Celular Tumoral
13.
Medicine (Baltimore) ; 102(24): e34054, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327303

RESUMO

Most hepatocellular carcinomas (HCC) treated by transcatheter arterial chemoembolization with drug-eluting beads (DEB-TACE) are characterized by coagulation necrosis; therefore, it is often difficult to distinguish enhancement in the arterial phase that would lead to false negative evaluation. This study aimed to evaluate the specificity and sensitivity of the difference value of multiphase contrast-enhanced computed tomography (CECT) in predicting residual tumor activity in HCC lesions after DEB-TACE. This retrospective diagnostic study analyzed CECT images of 73 HCC lesions in 57 patients 20 to 40 days (average 28 days) after DEB-TACE treatment at our Hospital from January to December 2019. Postoperative pathology or digital subtraction angiography images were used as references. Residual tumor activity after the first intervention was determined based on the presence of tumor staining in digital subtraction angiography or the postoperative pathological discovery of HCC tumor cells. A significant difference was observed between the active and inactive residual groups in ∆ HU difference between CT values of arterial phase and non-contrast scans (AN, P = .000), difference between CT values of venous phase and non-contrast scans (VN, P = .000), difference between CT values of delay phase and non-contrast scans (DN, P = .000), (difference between CT values of venous and arterial phase scans, P = .001), and (difference between CT values of delay and arterial phase scans, P = .005). No statistically significant difference was observed between the delayed and venous phases (difference between CT values of delay and venous phase scans, P = .361). The area under the curve (AUC) of the ROC curve showed that the diagnostic efficacies in difference in CT value of AN (AUC = 0.976), VN (AUC = 0.927), and DN (AUC = 0.924) were higher, and their cutoff values were 4.86, 12.065, 20.19 HU with their sensitivities of 93.3%, 84.4%, 77.8% and specificities of 100%, 96.4%, and 100%, respectively. difference in CT value values of AN, VN, DN, difference between CT values of venous and arterial phase scans and difference between CT values of delay and arterial phase scans can sensitively detect residual tumor activity 20-40 days after DEB-TACE. Thus, more sensitive active residual foci were detected using all 3 enhanced phases rather than only the arterial phase. Quantitative analysis of multiphase CECT can detect residual tumor activity in an early and noninvasive manner, which can provide time for patients to receive early follow-up treatment.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Neoplasia Residual/diagnóstico por imagem , Neoplasia Residual/terapia , Estudos Retrospectivos , Quimioembolização Terapêutica/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
14.
J Mater Chem B ; 11(22): 4855-4864, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37161740

RESUMO

Combining photodynamic therapy (PDT) and chemotherapy (CHT) by loading an anti-cancer drug and a photosensitizer (PS) into the same delivery nanosystem has been proposed as an effective approach to achieve synergistic effects for a safe cancer treatment. However, exploring an ideal delivery nanosystem has been challenging, because the noncovalent interactions must be maintained between the multiple components to produce a stable yet responsive nanostructure that takes into account the encapsulation of drug molecules. We addressed this issue by engineering the interfacial interaction between Ag2S quantum dots (QDs) using a pillararene derivative to direct the co-self-assembly of the entire system. The high surface area-to-volume ratio of the Ag2S QDs provided ample hydrophobic space to accommodate the anti-drug molecule doxrubicine. Moreover, Ag2S QDs served as PSs triggered by 808 nm near-infrared (NIR) light and also as carriers for high-efficiency delivery of drug molecules to the tumor site. Drug release experiments showed smart drug release under the acidic microenvironments (pH 5.5) in tumor cells. Additionally, the Ag2S QDs demonstrated outstanding PDT ability under NIR light, as confirmed by extracellular and intracellular reactive oxygen species generation. Significant treatment efficacy of the chemo-photodynamic synergistic therapy for cancer using the co-delivery system was demonstrated via in vitro and in vivo studies. These findings suggest that our system offers intelligent control of CHT and PDT, which will provide a promising strategy for constructing hybrid systems with synergistic effects for advanced applications in biomedicine, catalysis, and optoelectronics.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias , Fotoquimioterapia , Pontos Quânticos , Humanos , Pontos Quânticos/química , Preparações Farmacêuticas , Nanopartículas/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
Drug Deliv ; 30(1): 2197177, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37078789

RESUMO

DC Beads and CalliSpheres are commonly used microspheres in clinical transcatheter arterial chemoembolization, but these microspheres cannot be visualized by themselves. Therefore, in our previous study, we developed multimodal imaging nano-assembled microspheres (NAMs), which are visualized under CT/MR and the location of embolic microspheres can be determined during postoperative review, facilitating the evaluation of embolic areas and guiding subsequent treatment. Moreover, the NAMs can be carried with positively and negatively charged drugs, increasing the choice of drugs. Systematic comparative analysis of the pharmacokinetics of NAMs with commercially available DC Bead and CalliSpheres microspheres is important for evaluating the clinical application of NAMs. In our study, we compared the similarities and differences between NAMs and two drug-eluting beads (DEBs) in respect to drug loading capacity, drug release profiles, diameter variation and morphological characteristics. The results indicate that NAMs had good drug delivery and release characteristics as well as DC Bead and CalliSpheres in vitro experimental stage. Therefore, NAMs have a good application prospect in transcatheter arterial chemoembolization treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Antibióticos Antineoplásicos , Neoplasias Hepáticas/tratamento farmacológico , Microesferas , Quimioembolização Terapêutica/métodos , Doxorrubicina
16.
Liver Cancer ; 12(1): 72-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36872927

RESUMO

Introduction: Tislelizumab (anti-programmed cell death protein 1 antibody) showed preliminary antitumor activity and tolerability in patients with advanced solid tumors, including hepatocellular carcinoma (HCC). This study aimed to assess the efficacy and safety of tislelizumab in patients with previously treated advanced HCC. Methods: The multiregional phase 2 study RATIONALE-208 examined single-agent tislelizumab (200 mg intravenously every 3 weeks) in patients with advanced HCC with Child-Pugh A, Barcelona Clinic Liver Cancer stage B or C, and who had received one or more prior lines of systemic therapy. The primary endpoint was objective response rate (ORR), radiologically confirmed per Response Evaluation Criteria in Solid Tumors version 1.1 by the Independent Review Committee. Safety was assessed in patients who received ≥1 dose of tislelizumab. Results: Between April 9, 2018, and February 27, 2019, 249 eligible patients were enrolled and treated. After a median study follow-up of 12.7 months, ORR was 13% (n = 32/249; 95% confidence interval [CI], 9-18), including five complete and 27 partial responses. The number of prior lines of therapy did not impact ORR (one prior line, 13% [95% CI, 8-20]; two or more prior lines, 13% [95% CI, 7-20]). Median duration of response was not reached. The disease control rate was 53%, and median overall survival was 13.2 months. Of the 249 total patients, grade ≥3 treatment-related adverse events were reported in 38 (15%) patients; the most common was liver transaminase elevations in 10 (4%) patients. Treatment-related adverse events led to treatment discontinuation in 13 (5%) patients or dose delay in 46 (19%) patients. No deaths were attributed to the treatment per investigator assessment. Conclusion: Tislelizumab demonstrated durable objective responses, regardless of the number of prior lines of therapy, and acceptable tolerability in patients with previously treated advanced HCC.

17.
Cancers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980670

RESUMO

Background: Currently, surgical decisions for hepatocellular carcinoma (HCC) resection are difficult and not sufficiently personalized. We aimed to develop and validate data driven prediction models to assist surgeons in selecting the optimal surgical procedure for patients. Methods: Retrospective data from 361 HCC patients who underwent radical resection in two institutions were included. End-to-end deep learning models were built to automatically segment lesions from the arterial phase (AP) of preoperative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI). Clinical baseline characteristics and radiomic features were rigorously screened. The effectiveness of radiomic features and radiomic-clinical features was also compared. Three ensemble learning models were proposed to perform the surgical procedure decision and the overall survival (OS) and recurrence-free survival (RFS) predictions after taking different solutions, respectively. Results: SegFormer performed best in terms of automatic segmentation, achieving a Mean Intersection over Union (mIoU) of 0.8860. The five-fold cross-validation results showed that inputting radiomic-clinical features outperformed using only radiomic features. The proposed models all outperformed the other mainstream ensemble models. On the external test set, the area under the receiver operating characteristic curve (AUC) of the proposed decision model was 0.7731, and the performance of the prognostic prediction models was also relatively excellent. The application web server based on automatic lesion segmentation was deployed and is available online. Conclusions: In this study, we developed and externally validated the surgical decision-making procedures and prognostic prediction models for HCC for the first time, and the results demonstrated relatively accurate predictions and strong generalizations, which are expected to help clinicians optimize surgical procedures.

18.
Front Oncol ; 13: 1066352, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969034

RESUMO

Objectives: DNA mismatch repair deficiency (dMMR) status has served as a positive predictive biomarker for immunotherapy and long-term prognosis in gastric cancer (GC). The aim of the present study was to develop a computed tomography (CT)-based nomogram for preoperatively predicting mismatch repair (MMR) status in GC. Methods: Data from a total of 159 GC patients between January 2020 and July 2021 with dMMR GC (n=53) and MMR-proficient (pMMR) GC (n=106) confirmed by postoperative immunohistochemistry (IHC) staining were retrospectively analyzed. All patients underwent abdominal contrast-enhanced CT. Significant clinical and CT imaging features associated with dMMR GC were extracted through univariate and multivariate analyses. Receiver operating characteristic (ROC) curve analysis, decision curve analysis (DCA) and internal validation of the cohort data were performed. Results: The nomogram contained four potential predictors of dMMR GC, including gender (odds ratio [OR] 9.83, 95% confidence interval [CI] 3.78-28.20, P < 0.001), age (OR 3.32, 95% CI 1.36-8.50, P = 0.010), tumor size (OR 5.66, 95% CI 2.12-16.27, P < 0.001) and normalized tumor enhancement ratio (NTER) (OR 0.15, 95% CI 0.06-0.38, P < 0.001). Using an optimal cutoff value of 6.6 points, the nomogram provided an area under the curve (AUC) of 0.895 and an accuracy of 82.39% in predicting dMMR GC. The calibration curve demonstrated a strong consistency between the predicted risk and observed dMMR GC. The DCA justified the relatively good performance of the nomogram model. Conclusion: The CT-based nomogram holds promise as a noninvasive, concise and accurate tool to predict MMR status in GC patients, which can assist in clinical decision-making.

19.
Front Public Health ; 10: 963058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388345

RESUMO

Objective: To conduct a cost-effectiveness analysis of drug-eluting beads transcatheter arterial chemoembolization (DEB-TACE) and conventional transcatheter arterial chemoembolization (cTACE) for first-line treatment of hepatocellular carcinoma (HCC) from the perspective of the Chinese healthcare system. Methods: Based on the real-world clinical data of HCC patients receiving interventional therapy, a partitioned survival model was constructed for cost-effectiveness analysis. The model period is 1 month, and the research time limit is 10 years. The incremental cost-effectiveness ratio (ICER) is used as the evaluation index. One-way sensitivity analysis and probabilistic sensitivity analysis were used to analyze the uncertainty of parameters to test the stability of the model results. Results: The ICER of the DEB-TACE group was 11,875.62 $/QALYs, which was lower than the willingness to pay threshold (WTP) of 31,499.23 $/QALYs. One-way sensitivity analysis suggested that the utility value of progression-free survival (PFS) in the DEB-TACE group had the greatest impact. Probabilistic sensitivity analysis showed that at the level of WTP of 31,499.23 $/QALYs, DEB-TACE had a cost-effective probability of 92%. Conclusion: Under the current economic level in my country, DEB-TACE is more cost-effective than cTACE in the treatment of HCC patients.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Quimioembolização Terapêutica/métodos , Análise Custo-Benefício , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Microesferas , Resultado do Tratamento
20.
Front Bioeng Biotechnol ; 10: 1024174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213082

RESUMO

Currently, clinically available drug-loaded embolic microspheres have some shortcomings, such as being invisible with standard medical imaging modalities and only being able to carry positively charged drugs. The visualization of drug-loaded microspheres is very important for real-time monitoring of embolic position to improve the therapeutic effect. Meanwhile, the visualization of microspheres can enable postoperative reexamination, which is helpful for evaluating the embolization area and guiding the subsequent treatment. In addition, microspheres capable of loading different charged drugs can increase the choice of chemotherapeutic drugs and provide more possibilities for treatment. Therefore, it is of great importance to explore drug-loaded microspheres capable of multimodal imaging and loading drugs with different charges for transarterial chemoembolization (TACE) treatment of liver tumors. In our study, we designed a kind of nano-assembled microspheres (NAMs) that can realize computer X-ray tomography (CT)/magnetic resonance imaging (MRI)/Raman multimodal imaging, be loaded with positively and negatively charged drugs and test their imaging ability, drug loading and biological safety. The microspheres have strong attenuation performance for CT, high T2 relaxation for MRI and good sensitivity for surface enhanced Raman spectroscopy (SERS). At the same time, our microspheres can also load the positively charged drug, doxorubicin (DOX), and negatively charged drug Cisplatin. One gram of NAMs can hold 168 mg DOX or 126 mg Cisplatin, which has good drug loading and sustained-release capacity. Cell experiments also showed that the nano-assembled microspheres had good biocompatibility. Therefore, as multimodal developed drug loaded microspheres, nano assembled microspheres have great potential in TACE treatment of liver cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA