RESUMO
Dual-acting drugs that simultaneously inhibit fatty acid amide hydrolase (FAAH) and antagonize the transient receptor potential vanilloid 1 (TRPV1) is a promising stronger therapeutic approach for pain management without side effects associated with single-target agents. Here, several series of dual FAAH/TRPV1 blockers were designed and synthesized through rational molecular hybridization between the pharmacophore of classical TRPV1 antagonists and FAAH inhibitors. The studies resulted in compound 2r, which exhibited strong dual FAAH/TRPV1 inhibition/antagonism in vitro, exerted powerful analgesic effects in formalin-induced pain test (phase II, in mice), desirable anti-inflammatory activity in carrageenan-induced paw edema in rats, no TRPV1-related hyperthermia side effect, and favorable pharmacokinetic properties. Meanwhile, the contributions of TRPV1 and FAAH to its antinociceptive effects were verified by target engagement and molecular docking studies. Overall, compound 2r can serve as a new scaffold for developing FAAH/TRPV1 dual-activie ligands to counteract pain.
Assuntos
Antineoplásicos , Manejo da Dor , Ratos , Camundongos , Animais , Simulação de Acoplamento Molecular , Canais de Cátion TRPV , Ácidos Araquidônicos , Dor/tratamento farmacológico , Amidoidrolases/metabolismo , Antineoplásicos/uso terapêuticoRESUMO
Objective: To investigate the changes in cardiopulmonary function in patients with obstructive sleep apnea-hypopnea syndrome (OSAHS) by one-stage multiplane surgery. Methods: 70 patients with moderate and severe OSAHS underwent nasal in our hospital from July 2017 to February 2021, palatopharyngeal, and/or tongue operations simultaneously and were followed up for 6 months. The Epworth Sleeping Scale (ESS) scores of patients before and after surgery were compared to observe the surgical efficacy, and the changes in the cardiopulmonary function of patients before and after surgery were detected. The static and dynamic indexes of cardiopulmonary function, respiratory disturbance index (AHI), and blood oxygen saturation (SaO2) were compared before and after the operation. Results: After surgery, all patients' indexes of static lung function were improved compared with that before surgery. After surgery, the percentage of maximal oxygen uptake peak to the predicted value, percentage of oxygen pulse to the predicted value, the ratio of oxygen uptake power, anaerobic threshold, and maximum ventilatory capacity per minute/maximum exercise volume were increased compared with that before surgery, and AHI and SaO2 were improved compared with that before surgery. Conclusion: This study suggests that it is feasible for patients with OSAHS who are unable to tolerate or unwilling to undergo noninvasive assisted ventilation to undergo simultaneous surgery for multiplane stenosis. It can reduce clinical symptoms and improve cardiopulmonary function.
Assuntos
Apneia Obstrutiva do Sono , Humanos , Oxigênio , SíndromeRESUMO
PSMA3, a member of the proteasome subunit, has been shown to play a major player in protein degradation. Reportedly, PSMA3 functions as a negative regulator in various cancers including colon, pancreatic and gastric cancers. However, the contributions of PSMA3 to the progression of esophageal squamous cell carcinoma (ESCC) and the underlying mechanism remain unclear. Therefore, in this study, we investigated whether PSMA3 is involved in ESCC progression and the potential underlying mechanism. The results revealed that PSMA3 was highly expressed in the ESCC tumor tissues and functioned as a negative indicator according to the data from The Cancer Genome Atlas (TCGA)/Gene Expression Omnibus (GEO) datasets and clinical patients' samples. Pathway enrichment analysis showed that PSMA3 was closely correlated with ESCC cancer stemness and the inflammatory response; however, this correlation was absent after knockdown of PSMA3 in vitro. We further demonstrated that PSMA3 suppressed CD8+ T-cells infiltration depending on the C-C motif chemokine ligand 3 (CCL3)/C-C motif chemokine receptor 5 (CCR5) axis. Collectively, these results demonstrate the role of PSMA3 in ESCC cancer stemness and the negative regulation of CD8 T-cells infiltration mediated by PSMA3. The results of this study may provide a potential target for the immuno-oncology effect of PSMA3 in ESCC therapy.
Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Proteínas de Neoplasias , Linhagem Celular Tumoral , Bases de Dados de Ácidos Nucleicos , Neoplasias Esofágicas/enzimologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/imunologia , Carcinoma de Células Escamosas do Esôfago/enzimologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/imunologia , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Complexo de Endopeptidases do Proteassoma/biossíntese , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/imunologiaRESUMO
Background: There is increasing evidence that group 2 innate lymphoid cells (ILC2s) play an essential role in allergy and parasitic infection. However, the role of ILC2s in human lung cancer remains unclear. Methods: ILC2s from peripheral blood mononuclear cells (PBMCs) obtained from healthy donors (HDs) and non-small cell lung cancer (NSCLC) patients, and NSCLC tumor tissues were analyzed via multicolor flow cytometry. ILC2s or CD14+ cells were sorted by fluorescence-activated cell sorting. qPCR and flow cytometry were performed to assess the gene and protein expression of the indicated molecules. M1-like and M2-like macrophages were induced from CD14+ monocytes in vitro. Results: ILC2s were significantly more enriched in PBMCs and tumor tissues from NSCLC patients than in HDs. After screening for the main immune checkpoint molecules, we found that PD-1 was upregulated in ILC2s in NSCLC patients. Functionally, PD-1high ILC2s from tumor tissues expressed higher levels of IL-4 and IL-13 regarding both mRNA and protein levels than PD-1low ILC2s. Furthermore, PD-1high ILC2s robustly boosted M2-like macrophage polarization in vitro, by secreting IL-4 and IL-13, while neutralization of IL-4 and IL-13 by antibodies abrogated M2-like macrophage polarization. Conclusion: ILC2s are enriched in NSCLC patients and upregulate PD-1 expression. Upregulation of PD-1 facilitates the immunosuppressive function of ILC2s. PD-1high ILC2s enhance M2-like macrophage polarization by secreting IL-4 and IL-13. PD-1 acts as a positive regulator of the immunosuppressive function of ILC2s in human NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/etiologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Imunidade Inata , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Transdução de SinaisRESUMO
In chimeric antigen receptor (CAR)-T cell therapy, the role and mechanism of indoleamine 2, 3 dioxygenase 1 (IDO1) in enhancing antitumor immunity require further study. IDO1 is one of the most important immunosuppressive proteins in esophageal squamous cell carcinoma (ESCC). However, the IDO1 inhibitor, epacadostat, has failed in phase III clinical trials; its limited capacity to inhibit IDO1 expression at tumor sites was regarded as a key reason for clinical failure. In this study, we innovatively loaded the IDO1 inhibitor into hyaluronic acid-modified nanomaterial graphene oxide (HA-GO) and explored its potential efficacy in combination with CAR-T cell therapy. We found that inhibition of the antitumor effect of CAR-T cells in ESCC was dependent on the IDO1 metabolite kynurenine. Kynurenine could suppress CAR-T cell cytokine secretion and cytotoxic activity. Inhibiting IDO1 activity significantly enhanced the antitumor effect of CAR-T cells in vitro and in vivo. Our findings suggested that IDO1 inhibitor-loaded nanosheets could enhance the antitumor effect of CAR-T cells compared with free IDO1 inhibitor. Nanosheet-loading therefore provides a promising approach for improving CAR-T cell therapeutic efficacy in solid tumors.