Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Comput Assist Radiol Surg ; 19(1): 97-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37322299

RESUMO

PURPOSE: Pelvic bone segmentation and landmark definition from computed tomography (CT) images are prerequisite steps for the preoperative planning of total hip arthroplasty. In clinical applications, the diseased pelvic anatomy usually degrades the accuracies of bone segmentation and landmark detection, leading to improper surgery planning and potential operative complications. METHODS: This work proposes a two-stage multi-task algorithm to improve the accuracy of pelvic bone segmentation and landmark detection, especially for the diseased cases. The two-stage framework uses a coarse-to-fine strategy which first conducts global-scale bone segmentation and landmark detection and then focuses on the important local region to further refine the accuracy. For the global stage, a dual-task network is designed to share the common features between the segmentation and detection tasks, so that the two tasks mutually reinforce each other's performance. For the local-scale segmentation, an edge-enhanced dual-task network is designed for simultaneous bone segmentation and edge detection, leading to the more accurate delineation of the acetabulum boundary. RESULTS: This method was evaluated via threefold cross-validation based on 81 CT images (including 31 diseased and 50 healthy cases). The first stage achieved DSC scores of 0.94, 0.97, and 0.97 for the sacrum, left and right hips, respectively, and an average distance error of 3.24 mm for the bone landmarks. The second stage further improved the DSC of the acetabulum by 5.42%, and this accuracy outperforms the state-of-the-arts (SOTA) methods by 0.63%. Our method also accurately segmented the diseased acetabulum boundaries. The entire workflow took ~ 10 s, which was only half of the U-Net run time. CONCLUSION: Using the multi-task networks and the coarse-to-fine strategy, this method achieved more accurate bone segmentation and landmark detection than the SOTA method, especially for diseased hip images. Our work contributes to accurate and rapid design of acetabular cup prostheses.


Assuntos
Aprendizado Profundo , Humanos , Tomografia Computadorizada por Raios X/métodos , Quadril , Pelve/diagnóstico por imagem , Acetábulo , Processamento de Imagem Assistida por Computador/métodos
2.
Phys Med Biol ; 68(22)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37852280

RESUMO

Objective.Precise hip joint morphometry measurement from CT images is crucial for successful preoperative arthroplasty planning and biomechanical simulations. Although deep learning approaches have been applied to clinical bone surgery planning, there is still a lack of relevant research on quantifying hip joint morphometric parameters from CT images.Approach.This paper proposes a deep learning workflow for CT-based hip morphometry measurement. For the first step, a coarse-to-fine deep learning model is designed for accurate reconstruction of the hip geometry (3D bone models and key landmark points). Based on the geometric models, a robust measurement method is developed to calculate a full set of morphometric parameters, including the acetabular anteversion and inclination, the femoral neck shaft angle and the inclination, etc. Our methods were validated on two datasets with different imaging protocol parameters and further compared with the conventional 2D x-ray-based measurement method.Main results. The proposed method yields high bone segmentation accuracies (Dice coefficients of 98.18% and 97.85%, respectively) and low landmark prediction errors (1.55 mm and 1.65 mm) on both datasets. The automated measurements agree well with the radiologists' manual measurements (Pearson correlation coefficients between 0.47 and 0.99 and intraclass correlation coefficients between 0.46 and 0.98). This method provides more accurate measurements than the conventional 2D x-ray-based measurement method, reducing the error of acetabular cup size from over 2 mm to less than 1 mm. Moreover, our morphometry measurement method is robust against the error of the previous bone segmentation step. As we tested different deep learning methods for the prerequisite bone segmentation, our method produced consistent final measurement results, with only a 0.37 mm maximum inter-method difference in the cup size.Significance. This study proposes a deep learning approach with improved robustness and accuracy for pelvis arthroplasty planning.


Assuntos
Artroplastia de Quadril , Aprendizado Profundo , Prótese de Quadril , Artroplastia de Quadril/métodos , Fluxo de Trabalho , Tomografia Computadorizada por Raios X/métodos , Articulação do Quadril/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA