Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hypertension ; 81(2): 240-251, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37795601

RESUMO

BACKGROUND: Cigarette smoking/nicotine exposure in pregnancy shows an increased risk of hypertension in offspring, but the mechanisms are unclear. This study tested the hypothesis that m6A RNA hypomethylation epigenetically regulates vascular NOX (NADPH oxidase) and reactive oxygen species production, contributing to the fetal programming of a hypertensive phenotype in nicotine-exposed offspring. METHODS: Pregnant rats were exposed to episodic chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21, and experiments were performed in 6-month-old adult offspring. RESULTS: Antenatal CINA exposure augmented Ang II (angiotensin II)-stimulated blood pressure response in male, but not female offspring. Moreover, CINA increased vascular NOX2 expression and superoxide production exclusively in male offspring. Inhibition of NOX2 with gp91ds-tat, both ex vivo and in vivo, mitigated the CINA-induced elevation in superoxide production and blood pressure response. Notably, CINA enhanced the expression of vascular m6A demethylase FTO (fat mass and obesity-associated protein), while reducing the total vascular m6A abundance and specific m6A methylation of the NOX2 gene. Additionally, ex vivo inhibition of FTO with FB23-2 attenuated CINA-induced increases in vascular NOX2 expression. In vitro experiments using human umbilical vein endothelial cells demonstrated that nicotine dose-dependently upregulated FTO and NOX2 protein abundance, which were reversed by treatment with the FTO inhibitor FB23-2 or FTO knockdown using siRNAs. CONCLUSIONS: This study uncovers a new mechanism: m6A demethylase FTO-mediated epigenetic upregulation of vascular NOX2 signaling in CINA-induced hypertensive phenotype. This insight could lead to a therapeutic target for preventing and treating developmental hypertension programming.


Assuntos
Hipertensão , Nicotina , Gravidez , Ratos , Masculino , Feminino , Animais , Humanos , Lactente , Nicotina/farmacologia , Pressão Sanguínea , Espécies Reativas de Oxigênio/metabolismo , Superóxidos , Células Endoteliais/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Aerossóis/efeitos adversos , Dioxigenase FTO Dependente de alfa-Cetoglutarato
2.
Sci Rep ; 13(1): 18239, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880325

RESUMO

Electronic cigarettes (e-cigarettes) are a prevalent alternative to conventional nicotine cigarettes among smokers and people who have never smoked. Increased concentrations of serum free fatty acids (FFAs) are crucial in generating lipotoxicity. We studied the effects of acipimox, an antilipolytic drug, on e-cigarette-induced cardiac dysfunction. C57BL/6J wild-type mice on high fat diet were treated with saline, e-cigarette with 2.4% nicotine [e-cigarette (2.4%)], and e-cigarette (2.4%) plus acipimox for 12 weeks. Fractional shortening and ejection fraction were diminished in mice exposed to e-cigarettes (2.4%) compared with saline and acipimox-treated mice. Mice exposed to e-cigarette (2.4%) had increased circulating levels of inflammatory cytokines and FFAs, which were diminished by acipimox. Gene Set Enrichment Analysis revealed that e-cigarette (2.4%)-treated mice had gene expression changes in the G2/M DNA damage checkpoint pathway that was normalized by acipimox. Accordingly, we showed that acipimox suppressed the nuclear localization of phospho-p53 induced by e-cigarette (2.4%). Additionally, e-cigarette (2.4%) increased the apurinic/apyrimidinic sites, a marker of oxidative DNA damage which was normalized by acipimox. Mice exposed to e-cigarette (2.4%) had increased cardiac Heme oxygenase 1 protein levels and 4-hydroxynonenal (4-HNE). These markers of oxidative stress were decreased by acipimox. Therefore, inhibiting lipolysis with acipimox normalizes the physiological changes induced by e-cigarettes and the associated increase in inflammatory cytokines, oxidative stress, and DNA damage.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Humanos , Camundongos , Animais , Nicotina , Lipólise , Camundongos Endogâmicos C57BL , Fenótipo , Citocinas
3.
Front Cardiovasc Med ; 9: 879726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463745

RESUMO

Electronic cigarettes or e-cigarettes are the most frequently used tobacco product among adolescents. Despite the widespread use of e-cigarettes and the known detrimental cardiac consequences of nicotine, the effects of e-cigarettes on the cardiovascular system are not well-known. Several in vitro and in vivo studies delineating the mechanisms of the impact of e-cigarettes on the cardiovascular system have been published. These include mechanisms associated with nicotine or other components of the aerosol or thermal degradation products of e-cigarettes. The increased hyperlipidemia, sympathetic dominance, endothelial dysfunction, DNA damage, and macrophage activation are prominent effects of e-cigarettes. Additionally, oxidative stress and inflammation are unifying mechanisms at many levels of the cardiovascular impairment induced by e-cigarette exposure. This review outlines the contribution of e-cigarettes in the development of cardiovascular diseases and their molecular underpinnings.

4.
Am J Physiol Regul Integr Comp Physiol ; 321(5): R791-R801, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34524928

RESUMO

Maternal e-cigarette (e-cig) exposure is a pressing perinatal health concern. Emerging evidence reveals its potential adverse impacts on brain development in offspring, yet the underlying mechanisms are poorly understood. The present study tested the hypothesis that fetal e-cig exposure induces an aberrant DNA methylation profile in the developing brain, leading to alteration of autophagic flux signaling and programming of a sensitive phenotype to neonatal hypoxic-ischemic encephalopathy (HIE). Pregnant rats were exposed to chronic intermittent e-cig aerosol. Neonates were examined at the age of 9 days old. Maternal e-cig exposure decreased the body weight and brain weight but enhanced the brain-to-body weight ratio in the neonates. E-cig exposure induced a gender-dependent increase in hypoxic-ischemia-induced brain injury in male neonates associated with enhanced reactive oxygen species (ROS) activity. It differentially altered DNA methyltransferase expression and enhanced both global DNA methylation levels and specific CpG methylation at the autophagy-related gene 5 (ATG5) promoter. In addition, maternal e-cig exposure caused downregulations of ATG5, microtubule-associated protein 1 light chain 3ß, and sirtuin 1 expression in neonatal brains. Of importance, knockdown of ATG5 in neonatal pups exaggerated neonatal HIE. In conclusion, the present study reveals that maternal e-cig exposure downregulates autophagy-related gene expression via DNA hypermethylation, leading to programming of a hypoxic-ischemic sensitive phenotype in the neonatal brain.


Assuntos
Autofagia , Encéfalo/metabolismo , Metilação de DNA , Vapor do Cigarro Eletrônico/toxicidade , Sistemas Eletrônicos de Liberação de Nicotina , Epigênese Genética , Hipóxia-Isquemia Encefálica/etiologia , Efeitos Tardios da Exposição Pré-Natal , Animais , Animais Recém-Nascidos , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Encéfalo/patologia , Ilhas de CpG , Feminino , Idade Gestacional , Hipóxia-Isquemia Encefálica/genética , Hipóxia-Isquemia Encefálica/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Exposição por Inalação , Exposição Materna , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Gravidez , Regiões Promotoras Genéticas , Ratos Sprague-Dawley , Transdução de Sinais , Sirtuína 1/genética , Sirtuína 1/metabolismo
5.
Exp Mol Pathol ; 118: 104573, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33212125

RESUMO

Epidemiological studies have shown an increased risk of cardiovascular diseases in children born to mothers who smoked during pregnancy. The cardiovascular risk in the offspring associated with in utero nicotine exposure is further exaggerated by maternal obesity. The consumption of electronic cigarettes (e-cigarettes) is alarmingly increasing among adolescents and young adults without the knowledge of their harmful health effects. There has also been a substantial increase in e-cigarette use by women of reproductive age. This study investigates the detrimental effects of gestational exposure of e-cigarette and a high-fat diet (HFD) on neonatal hearts. Time-mated pregnant mice were fed a HFD and exposed to saline or e-cigarette aerosol with 2.4% nicotine from embryonic day 4 (E4) to E20. We demonstrated that in utero exposure of e-cigarettes and HFD from E4 to E20 triggers cardiomyocyte (CM) apoptosis in the offspring at postnatal day1 (PND1), PND3, and PND14. Induction of CM apoptosis following gestational exposure of e-cigarettes and HFD was associated with inactivation of AMP-activated protein kinase (AMPK), increased cardiac oxidative stress coupled with perturbation of cardiac BAX/BCL-2 ratio and activation of caspase 3 at PND 14. Electron microscopy further revealed that left ventricles of pups at PND14 after e-cigarette exposure exhibited apoptotic nuclei, convoluted nuclear membranes, myofibrillar derangement, and enlarged mitochondria occasionally showing signs of crystolysis, indicative of cardiomyopathy and cardiac dysfunction. Our results show profound adverse effects of prenatal exposure of e-cigarette plus HFD in neonatal hearts that may lead to long-term adverse cardiac consequences in the adult.


Assuntos
Apoptose , Dieta Hiperlipídica/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina/estatística & dados numéricos , Miócitos Cardíacos/patologia , Nicotina/toxicidade , Efeitos Tardios da Exposição Pré-Natal/patologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Masculino , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Nicotina/análise , Estresse Oxidativo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo
6.
PLoS One ; 15(10): e0239671, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33002059

RESUMO

In spite of the widespread use of electronic cigarettes, also known as e-cigarettes, and the proposed adverse cardiac effects of nicotine, the detrimental effects of e-cigarettes on the heart are not well known. This study examines the detrimental effects of e-cigarettes with nicotine at doses that yield circulating nicotine and cotinine in the ranges similar to the levels found in habitual smokers, and a high fat diet (HFD) on cardiac structure and function in a commonly used model of diet-induced obesity (DIO). C57BL/6J mice on an HFD were exposed to e-cigarette in the presence (2.4% nicotine) or absence (0% nicotine) of nicotine and saline aerosol for 12 weeks. Echocardiographic data demonstrated a decrease in left ventricular (LV) fractional shortening, LV ejection fraction, and velocity of circumferential fiber shortening (VCF) in mice treated with e-cigarette (2.4% nicotine) compared to e-cigarette (0% nicotine) or saline exposed mice. Cardiomyocytes (CMs) of mice treated with e-cigarette (2.4% nicotine) exhibited LV abnormalities, including lipid accumulation (ventricular steatosis), myofibrillar derangement and destruction, and mitochondrial hypertrophy, as revealed by transmission electron microscopy. The detrimental effects of e-cigarettes (2.4% nicotine) on cardiac structure and function was accompanied by increased oxidative stress, plasma free fatty acid levels, CM apoptosis, and inactivation of AMP-activated protein kinase and activation of its downstream target, acetyl-CoA-carboxylase. Our results indicate profound adverse effects of e-cigarettes (2.4% nicotine) on the heart in obese mice and raise questions about the safety of the nicotine e-cigarettes use.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Coração/efeitos dos fármacos , Camundongos Obesos , Miocárdio/patologia , Fumar/efeitos adversos , Animais , Cotinina/sangue , Ecocardiografia , Ácidos Graxos não Esterificados/sangue , Coração/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Miocárdio/ultraestrutura , Nicotina/efeitos adversos , Nicotina/sangue , Estresse Oxidativo/efeitos dos fármacos , Disfunção Ventricular Esquerda/induzido quimicamente
7.
Theranostics ; 10(25): 11820-11836, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33052248

RESUMO

Background: E-cigarette and other novel electronic nicotine delivery systems (ENDS) have recently entered the market at a rapid pace. The community desperately needs answers about the health effects of ENDS. The present study tested the hypothesis that perinatal nicotine exposure (PNE) causes a gender-dependent increase in vulnerability of the heart to ischemia-reperfusion (I/R) injury and cardiac dysfunction in male rat offspring via reprogramming of the miRNA-181a (miR-181a)-mediated signaling pathway and that miR-181a antisense could rescue this phenotype. Methods: Nicotine or saline was administered to pregnant rats via subcutaneous osmotic minipumps from gestational day 4 until postnatal day 10. Cardiac function and molecular biological experiments were conducted in ~3- month-old offspring. Results: PNE enhanced I/R-induced cardiac dysfunction and infarction in adult male but not in female offspring, which was associated with miR-181a over-expression in left ventricle tissues. In addition, PNE enhanced offspring cardiac angiotensin receptor (ATR) expressions via specific CpG hypomethylation of AT1R/AT2R promoter. Furthermore, PNE attenuated cardiac lncRNA H19 levels, but up-regulated cardiac TGF-ß/Smads family proteins and consequently up-regulated autophagy-related protein (Atg-5, beclin-1, LC3 II, p62) expression in the male offspring. Of importance, treatment with miR-181a antisense eliminated the PNE's effect on miR-181a expression/H19 levels and reversed PNE-mediated I/R-induced cardiac infarction and dysfunction in male offspring. Furthermore, miR-181a antisense also attenuated the effect of PNE on AT1R/AT2R/TGF-ß/Smads/autophagy-related biomarkers in the male offspring. Conclusion: Our data suggest that PNE could induce a reprogramming of cardiac miR-181a expression/DNA methylation pattern, which epigenetically modulates ATR/TGF-ß/autophagy signaling pathways, leading to gender-dependent development of ischemia-sensitive phenotype in postnatal life. Furthermore, miR-181a could severe as a potential therapeutic target for rescuing this phenotype.


Assuntos
Exposição Materna/efeitos adversos , MicroRNAs/metabolismo , Isquemia Miocárdica/genética , Nicotina/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Fumar/efeitos adversos , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Autofagia/genética , Ilhas de CpG/genética , Metilação de DNA , Modelos Animais de Doenças , Embrião de Mamíferos , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Desenvolvimento Fetal/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Coração/embriologia , Masculino , MicroRNAs/antagonistas & inibidores , Miocárdio/metabolismo , Nicotina/administração & dosagem , Gravidez , Regiões Promotoras Genéticas/genética , RNA Longo não Codificante/metabolismo , Ratos , Transdução de Sinais/genética , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Int J Biol Sci ; 16(8): 1349-1362, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32210724

RESUMO

Rationale: Cigarette smoking is a well-established risk factor for myocardial infarction and sudden cardiac death. The deleterious effects are mainly due to nicotine, but the mechanisms involved and theranostics remain unclear. Thus, we tested the hypothesis that nicotine exposure increases the heart sensitivity to ischemia/reperfusion injury and dysfunction, which can be rescued by autophagy inhibitor. Methods: Nicotine or saline was administered to adult rats via subcutaneous osmotic minipumps in the absence or presence of an autophagy inhibitor, 3-methyladenine (3-MA). After 30 days of nicotine treatment, the rats underwent the cardiac ischemia/reperfusion (I/R) procedure and echocardiography analysis, and the heart tissues were isolated for molecular biological studies. Results: Nicotine exposure increased I/R-induced cardiac injury and cardiac dysfunction as compared to the control. The levels of autophagy-related proteins including LC3 II, P62, Beclin1, and Atg5 were upregulated in the reperfused hearts isolated from nicotine-treated group. In addition, nicotine enhanced cardiac and plasma ROS production, and increased the phosphorylation of GSK3ß (ser9) in the left ventricle tissues. Treatment with 3-MA abolished nicotine-mediated increase in the levels of autophagy-related proteins and phosphorylation of GSK3ß, but had no effect on ROS production. Of importance, 3-MA ameliorated the augmented I/R-induced cardiac injury and dysfunction in the nicotine-treated group as compared to the control. Conclusion: Our results demonstrate that nicotine exposure enhances autophagy signaling pathway, resulting in development of ischemic-sensitive phenotype of heart. It suggests a potentially novel therapeutic strategy of autophagy inhibition for the treatment of ischemic heart disease.


Assuntos
Adenina/análogos & derivados , Autofagia/efeitos dos fármacos , Coração/fisiopatologia , Nicotina/química , Adenina/farmacologia , Animais , Biomarcadores , Ecocardiografia , Glicogênio Sintase Quinase 3 beta/metabolismo , Coração/efeitos dos fármacos , Masculino , Estresse Oxidativo , Fenótipo , Medicina de Precisão , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Traumatismo por Reperfusão , Fatores de Risco , Transdução de Sinais , Fumar/efeitos adversos
12.
J Neurosci Methods ; 326: 108376, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31361999

RESUMO

Electronic cigarettes (E-cig) use is increasing rapidly, particularly among youths. Animal models for E-cig exposure with pharmacokinetics resembling human E-cig users are lacking. We developed an E-cig aerosol exposure system for rodents and a chronic intermittent delivery method that simulates E-cig users who vape episodically during wakefulness and abstain during sleep. Mice were exposed to E-cig in a programmed schedule at very low, low, medium, or high doses defined by duration of each puff, number of puffs per delivery episode and frequency of episodes in the dark phase of a 12/12-h circadian cycle for 9 consecutive days. The plasma nicotine/cotinine levels and their time courses were determined using LC/MS-MS. We assessed the body weight, food intake and locomotor activity of Apolipoprotein E null (ApoE-/-) mice exposed to chronic intermittent E-cig aerosol. Plasma nicotine and cotinine levels were positively correlated with exposure doses. Nicotine and cotinine levels showed a circadian variation as they increased with time up to the maximum nicotine level of 21.8 ±â€¯7.1 ng/mL during the daily intermittent E-cig exposure in the 12-h dark phase and then declined during the light phase when there was no E-cig delivery. Chronic E-cig exposure to ApoE-/- mice decreased body weight, food intake and increased locomotion. Our rodent E-cig exposure system and chronic intermittent exposure method yield clinically relevant nicotine pharmacokinetics associated with behavioral and metabolic changes. The methodologies are essential tools for in vivo studies of the health impacts of E-cig exposure on CNS, cardiovascular, pulmonary, hepatic systems, metabolism and carcinogenesis.


Assuntos
Aerossóis , Comportamento Animal/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/farmacocinética , Agonistas Nicotínicos/farmacocinética , Vaping/efeitos adversos , Animais , Apolipoproteínas E/genética , Cotinina/sangue , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/administração & dosagem , Nicotina/sangue , Agonistas Nicotínicos/administração & dosagem , Agonistas Nicotínicos/sangue
13.
Artigo em Inglês | MEDLINE | ID: mdl-31214115

RESUMO

The prevalence of electronic cigarette (e-cigarettes) use has rapidly increased worldwide. Use of tobacco products has been associated with DNA damage and metabolic syndrome. Using Apolipoprotein E knockout (ApoE-/-) mice on a western diet (WD), a mouse model of non-alcoholic fatty liver disease (NAFLD), we recently demonstrated that nicotine in e-cigarettes activates hepatocyte apoptosis, and causes hepatic steatosis. This study examines the harmful effects of e-cigarettes on the liver with a special emphasis on DNA damage and mitochondrial dysfunction. ApoE-/- mice were exposed to saline, e-cigarettes without nicotine or e-cigarettes with 2.4% nicotine for 12 weeks using our newly developed mouse e-cigarette exposure model system that delivers nicotine to mice leading to equivalent serum cotinine levels found in human cigarette users. Mice exposed to e-cigarette (2.4% nicotine) had increased apurinic/apyrimidinic (AP) sites, a manifestation of DNA damage. Additionally, e-cigarette (2.4% nicotine) produced a decrease in NAD+/NADH ratio and increased oxidative stress in hepatic cells, in comparison with saline and e-cigarette (0%). Western blot analysis showed that mice treated with e-cigarette (2.4% nicotine) had increased poly (ADP ribose) polymerase (PARP1) activity associated with reduced levels of Sirtuin 1 (SIRT1). Furthermore, mitochondrial DNA mutations and PTEN-induced kinase 1 (PINK1) were increased in mice treated with e-cigarette (2.4% nicotine). Transmission electron microscopy revealed that hepatocytes of mice treated with e-cigarette (2.4% nicotine) exhibited increased vacuolization of the mitochondria and a reduction in cellular organelles. These results demonstrate the adverse effects of e-cigarettes exposure leading to NAD+ deficiency which may suggest a mechanistic link between e-cigarette-induced hepatic DNA damage and mitochondrial dysfunction.

14.
Am J Physiol Heart Circ Physiol ; 317(2): H445-H459, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31172811

RESUMO

Electronic cigarettes (e-cigarettes), also known as electronic nicotine delivery systems, are a popular alternative to conventional nicotine cigarettes, both among smokers and those who have never smoked. In spite of the widespread use of e-cigarettes and the proposed detrimental cardiac and atherosclerotic effects of nicotine, the effects of e-cigarettes on these systems are not known. In this study, we investigated the cardiovascular and cardiac effects of e-cigarettes with and without nicotine in apolipoprotein-E knockout (ApoE-/-) mice. We developed an e-cigarette exposure model that delivers nicotine in a manner similar to that of human e-cigarettes users. Using commercially available e-cigarettes, bluCig PLUS, ApoE-/- mice were exposed to saline, e-cigarette without nicotine [e-cigarette (0%)], and e-cigarette with 2.4% nicotine [e-cigarette (2.4%)] aerosol for 12 wk. Echocardiographic data show that mice treated with e-cigarette (2.4%) had decreased left ventricular fractional shortening and ejection fraction compared with e-cigarette (0%) and saline. Ventricular transcriptomic analysis revealed changes in genes associated with metabolism, circadian rhythm, and inflammation in e-cigarette (2.4%)-treated ApoE-/- mice. Transmission electron microscopy revealed that cardiomyocytes of mice treated with e-cigarette (2.4%) exhibited ultrastructural abnormalities indicative of cardiomyopathy. Additionally, we observed increased oxidative stress and mitochondrial DNA mutations in mice treated with e-cigarette (2.4%). ApoE-/- mice on e-cigarette (2.4%) had also increased atherosclerotic lesions compared with saline aerosol-treated mice. These results demonstrate adverse effects of e-cigarettes on cardiac function in mice.NEW & NOTEWORTHY The present study is the first to show that mice exposed to nicotine electronic cigarettes (e-cigarettes) have decreased cardiac fractional shortening and ejection fraction in comparison with controls. RNA-seq analysis reveals a proinflammatory phenotype induced by e-cigarettes with nicotine. We also found increased atherosclerosis in the aortic root of mice treated with e-cigarettes with nicotine. Our results show that e-cigarettes with nicotine lead to detrimental effects on the heart that should serve as a warning to e-cigarette users and agencies that regulate them.


Assuntos
Aterosclerose/etiologia , Sistemas Eletrônicos de Liberação de Nicotina , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Volume Sistólico , Vaping/efeitos adversos , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Animais , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Modelos Animais de Doenças , Exposição por Inalação/efeitos adversos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Mutação , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Estresse Oxidativo , Placa Aterosclerótica , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
15.
J Appl Physiol (1985) ; 125(5): 1555-1562, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30236046

RESUMO

Cigarette smoke is an aerosol containing microparticles that carry nicotine into the lung alveolar region where nicotine is rapidly absorbed into circulation. Nicotine exposure in smokers is a chronic intermittent process, with episodic intake during wakefulness and abstinence during sleep resulting in circadian fluctuation of blood nicotine levels. We developed an integrated platform where freely moving rodents can be exposed to episodic nicotine aerosol on an investigator-designed schedule. Plasma nicotine and its metabolite cotinine levels were determined with a LC-MS/MS method. We characterized the aerosol in the breathing zone of the rodent exposure chamber. The droplet-size distribution was within the respirable diameter range. The system can generate a wide range of nicotine concentrations in air that meet a variety of experimental needs. Rats were exposed to nicotine aerosol once every half hour in the dark phase of 12:12-h light-dark cycles for 10 days. We optimized the parameters of aerosol generation and exposure: plasma nicotine and cotinine concentrations reached 30-35 and 190-240 ng/ml, respectively. The nicotine levels and circadian patterns resembled the pharmacokinetic pattern of human smokers. In summary, we developed an aerosol system that can produce clinically relevant chronic intermittent nicotine exposure in unanesthetized, unrestrained rodents with route of administration and circadian blood pharmacokinetics resembling human smokers. This methodology is a novel tool for understanding the health effects of chronic intermittent nicotine exposure such as with tobacco cigarettes and electronic cigarettes for studies of behavior, pharmacology and toxicology, nicotine addiction, tobacco-related diseases, and teratogenicity, and for the discovery of therapeutics. NEW & NOTEWORTHY We developed a lung alveolar region-targeted aerosol method and a system that provides chronic intermittent nicotine exposure in freely moving rodents. The method produces in rodents clinically relevant nicotine exposure with the route and circadian pharmacokinetics resembling human smokers. This method is a novel tool for understanding the health impacts of chronic nicotine exposures such as with tobacco cigarettes and electronic cigarettes, for studying nicotine pharmacology, toxicology, addiction, and tobacco-related diseases, and for the discovery of therapeutics.


Assuntos
Ritmo Circadiano , Nicotina/administração & dosagem , Aerossóis , Animais , Câmaras de Exposição Atmosférica , Cotinina/sangue , Sistemas de Liberação de Medicamentos , Masculino , Modelos Animais , Nicotina/sangue , Nicotina/farmacocinética , Ratos , Ratos Sprague-Dawley
16.
Sci Rep ; 7(1): 16974, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209071

RESUMO

Maternal smoking with obligatory nicotine inhalation is associated with preterm delivery, low birth weight, fetal growth retardation and developmental defects. We tested the hypothesis that cigarette smoking-relevant nicotine inhalation during pregnancy impairs cardiovascular function and uterine hemodynamics with consequential fetal ischemia. Pregnant rats exposed to episodic inhaled nicotine via a novel lung alveolar region-targeted aerosol method produced nicotine pharmacokinetics resembling cigarette smoking in humans. This clinically relevant nicotine aerosol inhalation (NAI) induced transient reduction and irregular fluctuations in uterine artery blood flow associated with cardiac arrhythmia and high magnitude irregular fluctuations of systemic blood pressure. The arrhythmia included sinoatrial (SA) block, sinus arrest, 2° and 3° atrioventricular (A-V) block and supraventricular escape rhythm. These effects were blocked by the nicotinic acetylcholine receptor (nAChR) antagonist mecamylamine. Resection of the ovarian nerve, which innervates uterine blood vessels, counteracted the NAI-induced reduction in uterine blood flow. We suggest that the rapid rise pattern of arterial blood nicotine concentration stimulates and then desensitizes autonomic nAChRs leading to disruptions of cardiac function as well as systemic and uterine hemodynamics that reduces uteroplacental blood flow, a mechanism underlying maternal smoking-associated pregnancy complications and developmental disorders. These findings challenge the safety of pure nicotine inhalation, i.e., E-cigarettes.


Assuntos
Arritmias Cardíacas/induzido quimicamente , Fumar Cigarros/efeitos adversos , Nicotina/administração & dosagem , Útero/efeitos dos fármacos , Administração por Inalação , Animais , Feminino , Mecamilamina/farmacologia , Nicotina/farmacocinética , Nicotina/toxicidade , Antagonistas Nicotínicos/farmacologia , Ovário/efeitos dos fármacos , Ovário/inervação , Gravidez , Ratos Sprague-Dawley , Receptores Nicotínicos/metabolismo , Fluxo Sanguíneo Regional/efeitos dos fármacos , Útero/irrigação sanguínea
17.
Nicotine Tob Res ; 15(7): 1248-58, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23239844

RESUMO

INTRODUCTION: Nicotine is a heavily used addictive drug acquired through smoking tobacco. Nicotine in cigarette smoke is deposited and absorbed in the lungs, which results in a rapidly peaked slowly declining arterial concentration. This pattern plays an important role in initiation of nicotine addiction. METHODS: A method and device were developed for delivering nicotine to rodents with lung alveolar region-targeted aerosol technology. The dose of delivery can be controlled by the nicotine aerosol concentration and duration of exposure. RESULTS: Our data showed that, in the breathing zone of the nose-only exposure chamber, the aerosol droplet size distribution was within the respirable diameter range. Rats were exposed to nicotine aerosol for 2 min. The arterial blood nicotine concentration reached 43.2 ± 15.7 ng/ml (mean ± SD) within 1-4 min and declined over the next 20 min, closely resembling the magnitude and early pharmacokinetics of a human smoking a cigarette. The acute inhalation toxicity of nicotine: LC50 = 2.3mg/L was determined; it was affected by pH, suggesting that acidification decreases nicotine absorption and/or bioavailability. CONCLUSIONS: A noninvasive method and toolkit were developed for delivering nicotine to rodents that enable rapid delivery of a controllable amount of nicotine into the systemic circulation and brain-inducing dose-dependent pharmacological effects, even a lethal dose. Aerosol inhalation can produce nicotine kinetics in both arterial and venous blood resembling human smoking. This method can be applied to studies of the effects of chronic intermittent nicotine exposure, nicotine addiction, toxicology, tobacco-related diseases, teratogenicity, and for discovery of pharmacological therapeutics.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nicotina/administração & dosagem , Nicotina/sangue , Administração por Inalação , Aerossóis/administração & dosagem , Animais , Sistemas de Liberação de Medicamentos/instrumentação , Desenho de Equipamento , Humanos , Dose Letal Mediana , Masculino , Nicotina/farmacocinética , Nicotina/toxicidade , Alvéolos Pulmonares/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fumar/sangue
18.
Acta Pharmacol Sin ; 30(6): 761-70, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19498418

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are expressed in brainstem and spinal cord regions involved in the control of breathing. These receptors mediate central cholinergic regulation of respiration and effects of the exogenous ligand nicotine on respiratory pattern. Activation of alpha4* nAChRs in the preBötzinger Complex (preBötC), an essential site for normal respiratory rhythm generation in mammals, modulates excitatory glutamatergic neurotransmission and depolarizes preBötC inspiratory neurons, leading to increases in respiratory frequency. nAChRs are also present in motor nuclei innervating respiratory muscles. Activation of post- and/or extra-synaptic alpha4* nAChRs on hypoglossal (XII) motoneurons depolarizes these neurons, potentiating tonic and respiratory-related rhythmic activity. As perinatal nicotine exposure may contribute to the pathogenesis of sudden infant death syndrome (SIDS), we discuss the effects of perinatal nicotine exposure on development of the cholinergic and other neurotransmitter systems involved in control of breathing. Advances in understanding of the mechanisms underlying central cholinergic/nicotinic modulation of respiration provide a pharmacological basis for exploiting nAChRs as therapeutic targets for neurological disorders related to neural control of breathing such as sleep apnea and SIDS.


Assuntos
Nicotina/farmacologia , Receptores Nicotínicos/metabolismo , Respiração , Animais , Sistemas de Liberação de Medicamentos , Feminino , Ácido Glutâmico/metabolismo , Humanos , Recém-Nascido , Nicotina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Agonistas Nicotínicos/farmacologia , Gravidez , Receptores Nicotínicos/efeitos dos fármacos , Centro Respiratório/efeitos dos fármacos , Centro Respiratório/fisiologia , Síndromes da Apneia do Sono/tratamento farmacológico , Síndromes da Apneia do Sono/fisiopatologia , Morte Súbita do Lactente/etiologia , Morte Súbita do Lactente/prevenção & controle
19.
Nat Neurosci ; 11(5): 538-40, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18391943

RESUMO

Delineating neurons that underlie complex behaviors is of fundamental interest. Using adeno-associated virus 2, we expressed the Drosophila allatostatin receptor in somatostatin (Sst)-expressing neurons in the preBötzinger Complex (preBötC). Rapid silencing of these neurons in awake rats induced a persistent apnea without any respiratory movements to rescue their breathing. We hypothesize that breathing requires preBötC Sst neurons and that their sudden depression can lead to serious, even fatal, respiratory failure.


Assuntos
Apneia/fisiopatologia , Proteínas de Drosophila/genética , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropeptídeos/genética , Centro Respiratório/metabolismo , Somatostatina/metabolismo , Animais , Apneia/induzido quimicamente , Apneia/genética , Relógios Biológicos/efeitos dos fármacos , Relógios Biológicos/genética , Biomarcadores/metabolismo , Dependovirus/genética , Drosophila , Proteínas de Drosophila/biossíntese , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Rede Nervosa/citologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Neurônios/efeitos dos fármacos , Neuropeptídeos/farmacologia , Periodicidade , Ratos , Receptores Acoplados a Proteínas G/biossíntese , Receptores da Neurocinina-1/metabolismo , Receptores de Neuropeptídeos/biossíntese , Centro Respiratório/citologia , Centro Respiratório/efeitos dos fármacos , Fenômenos Fisiológicos Respiratórios , Transfecção/métodos , Vigília/fisiologia
20.
J Neurosci ; 28(2): 519-28, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18184794

RESUMO

Acetylcholine and nicotine can modulate respiratory patterns by acting on nicotinic acetylcholine receptors (nAChRs) in the preBötzinger complex (preBötC). To further explore the molecular composition of these nAChRs, we studied a knock-in mouse strain with a leucine-to-alanine mutation in the M2 pore-lining region (L9'A) of the nAChR alpha4 subunit; this mutation renders alpha4-containing receptors hypersensitive to agonists. We recorded respiratory-related rhythmic motor activity from hypoglossal nerve (XIIn) and patch-clamped preBötC inspiratory neurons in an in vitro medullary slice preparation from neonatal mice. Nicotine affected respiratory rhythm at concentrations approximately 100-fold lower in the homozygous L9'A knock-in mice compared with wild-type mice. Bath application of 5 nm nicotine increased the excitability of preBötC inspiratory neurons, increased respiratory frequency, and induced tonic/seizure-like activities in XIIn in L9'A mice, effects similar to those induced by 1 microM nicotine in wild-type mice. In L9'A mice, microinjection of low nanomolar concentrations of nicotine into the preBötC increased respiratory frequency, whereas injection into the ipsilateral hypoglossal (XII) nucleus induced tonic/seizure-like activity. The alpha4*-selective nAChR antagonist dihydro-beta-erythroidine produced opposite effects and blocked the nicotinic responses. These data, showing that nAChRs in the preBötC and XII nucleus in L9'A mice are hypersensitive to nicotine and endogenous ACh, suggest that functional alpha4* nAChRs are present in the preBötC. They mediate cholinergic/nicotinic modulation of the excitability of preBötC inspiratory neurons and of respiratory rhythm. Furthermore, functional alpha4* nAChRs are present in XII nucleus and mediate cholinergic/nicotinic modulation of tonic activity in XIIn.


Assuntos
Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Subunidades Proteicas/genética , Receptores Nicotínicos/genética , Respiração , Centro Respiratório/efeitos dos fármacos , Animais , Di-Hidro-beta-Eritroidina/farmacologia , Relação Dose-Resposta a Droga , Interações Medicamentosas , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos da radiação , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Potenciais da Membrana/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurônios/efeitos da radiação , Antagonistas Nicotínicos/farmacologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Periodicidade , Subunidades Proteicas/metabolismo , Receptores Nicotínicos/metabolismo , Respiração/efeitos dos fármacos , Respiração/genética , Centro Respiratório/citologia , Centro Respiratório/fisiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA