Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 298(7): 102091, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35654141

RESUMO

As a typical pathogen-associated molecular pattern, bacterial flagellin can bind Toll-like receptor 5 and the intracellular NAIP5 receptor component of the NLRC4 inflammasome to induce immune responses in mammals. However, these flagellin receptors are generally poorly understood in lower animal species. In this study, we found that the isolated flagellum of Vibrio splendidus AJ01 destroyed the integrity of the tissue structure of coelomocytes and promoted apoptosis in the sea cucumber Apostichopus japonicus. To further investigate the molecular mechanism, the novel intracellular LRR domain-containing protein tropomodulin (AjTmod) was identified as a protein that interacts with flagellin C (FliC) with a dissociation constant (Kd) of 0.0086 ± 0.33 µM by microscale thermophoresis assay. We show that knockdown of AjTmod also depressed FliC-induced apoptosis of coelomocytes. Further functional analysis with different inhibitor treatments revealed that the interaction between AjTmod and FliC could specifically activate p38 MAPK, but not JNK or ERK MAP kinases. We demonstrate that the transcription factor p38 is then translocated into the nucleus, where it mediates the expression of p53 to induce coelomocyte apoptosis. Our findings provide the first evidence that intracellular AjTmod serves as a novel receptor of FliC and mediates p53-dependent coelomocyte apoptosis by activating the p38 MAPK signaling pathway in Echinodermata.


Assuntos
Apoptose , Equinodermos , Flagelina , Tropomodulina , Vibrio , Proteínas Quinases p38 Ativadas por Mitógeno , Animais , Equinodermos/citologia , Flagelina/metabolismo , Transdução de Sinais , Tropomodulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
2.
Dev Comp Immunol ; 135: 104486, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35772590

RESUMO

MicroRNAs (miRNAs), as important regulators of host immune responses, play an crucial position in the interaction between host and pathogen by inhibiting the target gene's transcriptional and post-transcriptional expression. A well-validated tumor suppressor, Previously, miR-137 was found to be variably expressed in the sick sea cucumber Apostichopus japonicus specimens by high-throughput sequencing. To further investigate the mechanism of miR-137 regulation of SUS, we identified Atg13 from sea cucumber by dual luciferase reporter assay and RACE (designated as AjAtg13) and was able to serve as a target gene for miR-137. The full-length cDNA of AjAtg13 is a 2197 bp fragment containing an ORF (open reading frame) of 1149 bp and encodes a total of 382 amino acid polypeptides with a predicted molecular weight of 41.7 kDa. Further expression profiling analysis showed increased mRNA levels of AjAtg13 and reduced expression levels of miR-137 in LPS-stimulated sea cucumber coelomocytes, hinting that miR-137 may negatively regulate AjAtg13. MiR-137 targets AjAtg13 through binding to the 3'UTR region by dual-luciferase reporter gene analysis. MiR-137 overexpression in coelomocytes repressed the expression of autophagy related genes, such as AjAtg13, AjLC3, at the same time, it significantly inhibited autophagy and reduced the ability to clear Vibrio splendidus. Conversely, inhibition of miR-137 significantly upregulated the expression of AjAtg13, promoted autophagy and increased clearance of V. splendidus. Subsequent interference with AjAtg13 also significantly inhibits autophagy. In summary, our results suggested that miR-137 could promote coelomocytes autophagy to restrict bacterial invasion by aiming at AjAtg13 in pathogen-stimulated sea cucumbers.


Assuntos
MicroRNAs , Pepinos-do-Mar , Stichopus , Vibrioses , Vibrio , Animais , Autofagia/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição/genética
3.
Dev Comp Immunol ; 133: 104434, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35562078

RESUMO

N6-methyladenosine (m6A), the most abundant epitranscriptomic modification in eukaryotic messenger RNA (mRNA), plays important roles in regulation of gene expression for fundamental biological processes and diverse physiological functions, including combating with pathogen infection. Here, we were first profile transcriptome-wide m6A sequencing in four stages of skin ulceration syndrome-diseased Apostichopus japonicus following Vibrio splendidus infection, including Control (healthy), Early (small ulcer), Later (extensive ulcer), and Resistant (no ulcer) groups. Our results revealed that three experimental groups were all extensively methylated by m6A and the proportion of the m6A modified genes were also significantly increased to 28.90% (Early), 27.97% (Later), and 29.98% (Resistant) when compared with Control group (15.15%), indicating m6A modification could be induced by V. splendidus infection. Intriguingly, we discovered a positive correlation between the m6A methylation level and mRNA abundance, indicating a positive regulatory role of m6A in sea cucumber gene expression during V. splendidus infection. Moreover, genes with specific and differentially expressed m6A methylation in Later group were both enriched in cell adhesion, while Early and Resistant groups were both mainly involved in DNA conformation change and chromosome organization when compared with Control, suggesting the higher-methylated m6A might serve as "conformational marker" and associated to the initiation of related anti-disease genes transcription in order to improve disease resistance of sea cucumber. Subsequently, we selected the pivotal genes enriched in cell adhesion pathway and found that the IggFc-binding protein (FcGBP) and Fibrocystin-L both had higher levels of m6A methylation and higher level of mRNA expressions in Later group. Conversely, Fibrinogen C domain-containing protein 1 (F1BCD1) gene presented as an antibacterial role in sea cucumber and showed higher mRNA expression and higher m6A methylation in Resistant group and lower mRNA level in Later group. The levels of m6A methylation and mRNA abundance of FcGBP and F1BCD1 genes indicates disease occurrence or disease resistant were also verified by MeRIP-qPCR. Overall, our study presents the first comprehensive characterize of dynamic m6A methylation modification in the different stages of disease in sea cucumber. These data provide an invaluable resource for future studies of function and biological significance of m6A in mRNA in marine invertebrates.


Assuntos
Pepinos-do-Mar , Stichopus , Vibrioses , Vibrio , Adenosina/análogos & derivados , Animais , Metilação , RNA Mensageiro/genética , Pepinos-do-Mar/genética , Stichopus/genética , Stichopus/microbiologia , Úlcera , Vibrio/fisiologia
4.
Fish Shellfish Immunol ; 124: 497-504, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35483599

RESUMO

Long non-coding RNAs (lncRNAs) are novel functional non-coding RNAs which engaged in many aspects of biological processes. N6-methyladenosine (m6A) as a kind of abundant epitranscriptomic modification in eukaryotes, plays important roles in regulation of gene expression for various physiological functions. Our previous study demonstrated that sea cucumber lncRNAs were differentially expressed during bacterial infection. However, whether the post-transcriptional regulation of lncRNAs influenced by m6A modification in sea cucumbers with different stages of skin ulceration syndrome (SUS) are largely unknown. Here, we generated the genome-wide map of m6A lncRNAs in SUS-diseased and SUS-resistant sea cucumbers for the first time, revealed that m6A levels in lncRNAs were mainly upregulated in SUS-resistant group. Intriguingly, most of the m6A lncRNAs showed a positive correlation between the expression levels and m6A levels based on conjoint analysis, suggesting that m6A modification on a lncRNA may contribute to its RNA stability. Furthermore, the host genes of lncRNAs with dysregulated m6A peaks were enriched in immune pathway. More importantly, methyltransferase METTL3 was required for m6A methylation modification and played positive roles in lncRNA expression. Collectively, this study presents the comprehensive characters of m6A lncRNAs in marine invertebrate. These m6A modified lncRNAs may be served as potential regulators associated with SUS and provide a promising avenue for disease therapy through targeting METTL3.


Assuntos
Infecções Bacterianas , RNA Longo não Codificante , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Animais , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
5.
Zool Res ; 43(2): 285-300, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35238186

RESUMO

Organisms produce high levels of reactive oxygen species (ROS) to kill pathogens or act as signaling molecules to induce immune responses; however, excessive ROS can result in cell death. To maintain ROS balance and cell survival, mitophagy selectively eliminates damaged mitochondria via mitophagy receptors in vertebrates. In marine invertebrates, however, mitophagy and its functions remain largely unknown. In the current study, Vibrio splendidus infection damaged mitochondrial morphology in coelomocytes and reduced mitochondrial membrane potential (ΔΨm) and mitophagosome formation. The colocalization of mitochondria and lysosomes further confirmed that lipopolysaccharide (LPS) treatment increased mitophagy flux. To explore the regulatory mechanism of mitophagy, we cloned Bcl2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), a common mitophagy receptor, from sea cucumber Apostichopus japonicus (AjBNIP3) and confirmed that AjBNIP3 was significantly induced and accumulated in mitochondria after V. splendidus infection and LPS exposure. At the mitochondrial membrane, AjBNIP3 interacts with microtubule-associated protein 1 light chain 3 (LC3) on phagophore membranes to mediate mitophagy. After AjBNIP3 interference, mitophagy flux decreased significantly. Furthermore, AjBNIP3-mediated mitophagy was activated by ROS following the addition of exogenous hydrogen peroxide (H2O2), ROS scavengers, and ROS inhibitors. Finally, inhibition of BNIP3-mediated mitophagy by AjBNIP3 small interfering RNA (siRNA) or high concentrations of lactate increased apoptosis and decreased coelomocyte survival. These findings highlight the essential role of AjBNIP3 in damaged mitochondrial degradation during mitophagy. This mitophagy activity is required for coelomocyte survival in A. japonicus against V. splendidus infection.


Assuntos
Stichopus , Animais , Peróxido de Hidrogênio , Mitofagia/genética , Espécies Reativas de Oxigênio/metabolismo , Stichopus/genética , Stichopus/metabolismo , Vibrio
6.
J Immunol ; 208(2): 464-479, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34965964

RESUMO

Inflammation participates in host defenses against infectious agents and contributes to the pathophysiology of many diseases. IL-17 is a well-known proinflammatory cytokine that contributes to various aspects of inflammation in vertebrates. However, the functional role of invertebrate IL-17 in inflammatory regulation is not well understood. In this study, we first established an inflammatory model in the Vibrio splendidus-challenged sea cucumber Apostichopus japonicus (Echinodermata). Typical inflammatory symptoms, such as increased coelomocyte infiltration, tissue vacuoles, and tissue fractures, were observed in the V. splendidus-infected and diseased tissue of the body wall. Interestingly, A. japonicus IL-17 (AjIL-17) expression in the body wall and coelomocytes was positively correlated with the development of inflammation. The administration of purified recombinant AjIL-17 protein also directly promoted inflammation in A. japonicus Through genome searches and ZDOCK prediction, a novel IL-17R counterpart containing FNIII and hypothetical TIR domains was identified in the sea cucumber genome. Coimmunoprecipitation, far-Western blotting, and laser confocal microscopy confirmed that AjIL-17R could bind AjIL-17. A subsequent cross-linking assay revealed that the AjIL-17 dimer mediates the inflammatory response by the specific binding of dimeric AjIL-17R upon pathogen infection. Moreover, silencing AjIL-17R significantly attenuated the LPS- or exogenous AjIL-17-mediated inflammatory response. Functional analysis revealed that AjIL-17/AjIL-17R modulated inflammatory responses by promoting A. japonicus TRAF6 ubiquitination and p65 nuclear translocation and evenly mediated coelomocyte proliferation and migration. Taken together, our results provide functional evidence that IL-17 is a conserved cytokine in invertebrates and vertebrates associated with inflammatory regulation via the IL-17-IL-17R-TRAF6 axis.


Assuntos
Citocinas/imunologia , Interleucina-17/metabolismo , Receptores de Interleucina-17/metabolismo , Stichopus/imunologia , Vibrio/imunologia , Animais , Proliferação de Células/fisiologia , Genoma/genética , Inflamação/imunologia , Interleucina-17/genética , Interferência de RNA , RNA Interferente Pequeno/genética , Receptores de Interleucina-17/genética , Stichopus/genética , Stichopus/microbiologia , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Transcrição RelA/metabolismo , Ubiquitinação
7.
Int J Biol Macromol ; 189: 34-43, 2021 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-34418417

RESUMO

MicroRNAs (miRNAs) are closely related to the occurrence, development, and immune response of diseases. BCL2-associated athanogene 2 (BAG2) is a member of the BAG family that functions in diverse cellular processes, including cell death, differentiation, and cell division. In this study, we cloned the cDNA full-length of sea cucumber (Apostichopus japonicus) BAG2 (AjBAG2) and confirmed it is an anti-apoptotic protein in vitro and in vivo during Vibrio splendidus infection. Moreover, we identified a perfect complementarity between miR-375 and the 3'-untranslated region (UTR) sequence of AjBAG2. The miR-375 expression decreased the luciferase activity dose-dependently when co-transfected with the AjBAG2 3'-UTR-luciferase reporter containing the miR-375 target site in epithelioma papulosum cyprini (EPC) cells. This inhibition was partially recovered by a miR-375 specific inhibitor. The mRNA and protein levels of AjBAG2 were opposite to that of coelomocytes in challenged sea cucumber when treated with miR-375 mimics or inhibitors. Additionally, miR-375 expression induced coelomocytes apoptosis and blocked the anti-apoptotic activity of AjBAG2. Our data demonstrated that AjBAG2 is an anti-apoptotic protein during V. splendidus infection and this function can be inhibited by miR-375 in sea cucumbers.


Assuntos
Apoptose , Chaperonas Moleculares/metabolismo , Stichopus/citologia , Stichopus/microbiologia , Vibrio/fisiologia , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Animais , Apoptose/genética , Sequência de Bases , Clonagem Molecular , Sequência Conservada , MicroRNAs/genética , MicroRNAs/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética
8.
Iran J Biotechnol ; 18(1): e2259, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32884955

RESUMO

BACKGROUND: Vibrio Splendidus Vs is an important aquaculture pathogen that can infect a broad host of marine organisms. In our previous study, an antagonistic bacterium Vibrio sp. V33 that possessed inhibitory effects on the growth and virulence of a pathogenic isolate V. splendidus Vs was identified. OBJECTIVES: Here, we further explored the antagonistic substances and antagonistic effects from the viewpoint of iron competition. MATERIALS AND METHODS: The main antagonistic substances in the supernatants from Vibrio sp. V33 were identified using the bioassay-guided method. The response of V. splendidus Vs under the challenge of cell-free supernatant from Vibrio sp. V33 was determined via sodium dodecyl sulfate-polyacrylamide gel electrophoresis and real-time reverse-transcription PCR. RESULTS: The main antagonistic substances produced by Vibrio sp. V33 have low molecular weights, are water soluble, and are heat-stable substances. Meanwhile, the iron uptake rate of Vibrio sp. V33 was higher than that of V. splendidus Vs. In the presence of cell-free supernatant from Vibrio sp. V33, expressions of two functional genes, viuB and asbJ related to ferric uptake processes in V. splendidus Vs, were up-regulated, whereas furVs coding the ferric uptake repressor was suppressed below 0.5-fold. One gene coding phosphopyruvate hydratase does not change at mRNA level, but was up-regulated at protein level. CONCLUSIONS: Our results suggested that antagonistic effect of Vibrio sp. V33 on the pathogenic isolate V. splendidus Vs was partially due to the stronger ability of Vibrio sp. V33 to seize iron. This cell-free supernatant from Vibrio sp. V33 created an iron-limited milieu for V. splendidus Vs, which led to the changed expression profiles of genes that were related to iron uptake in V. splendidus Vs.

9.
Fish Shellfish Immunol ; 106: 583-590, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32835852

RESUMO

MiR-210 plays a crucial role in cell survival, migration, and regeneration in vertebrates. In our previous work, the expression of miR-210 was considerably induced in diseased Apostichopus japonicus with skin ulcer syndrome (SUS). To further explore the mechanism of miR-210 in regulating the SUS, this study identified E2F transcription factor 3 (E2F3), a candidate target of miR-210, from the sea cucumber A. japonicus via RNA-seq and RACE (designated as AjE2F3). A 1992 bp fragment representing the full-length cDNA of AjE2F3 was obtained, which includes an ORF of 1194 bp encoding a polypeptide of 398 amino acids with a molecular weight of 44.43 kDa. Expression profiling analysis suggested that the expression of AjE2F3 decreased while that of miR-210 increased in Vibrio splendidus-challenged sea cucumber coelomocytes. Dual-luciferase reporter assay revealed that miR-210 targeted AjE2F3 via binding to the 3'UTR region from 108 nt to 128 nt. MiR-210 overexpression in cultured coelomocytes repressed AjE2F3 at the mRNA level and reduced cell proliferation in vitro. Consistently, AjE2F3 overexpression significantly promoted coelomocyte proliferation, as assessed by MTT in vitro. Overall, our results indicated that miR-210 can suppress coelomocyte proliferation by targeting AjE2F3 in pathogen-challenged sea cucumbers.


Assuntos
Fatores de Transcrição E2F/genética , Fatores de Transcrição E2F/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , MicroRNAs/genética , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Proliferação de Células , Filogenia , Alinhamento de Sequência
10.
Fish Shellfish Immunol ; 104: 410-418, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32569714

RESUMO

Serine protease inhibitors (SPIs, serpins) are a protein superfamily involved in almost all physiological processes in all organisms. In this study, a novel serpin was identified from Apostichopus japonicus (Ajserpin) by using high-throughput sequencing and RACE approaches. The full-length cDNA of Ajserpin was 1893 bp with a 5'-untranslated region (UTR) of 130 bp, a 3'-UTR of 587 bp, and an open reading frame of 1176 bp encoding a polypeptide of 391 amino acids with a deduced molecular weight of 43.8 kDa. Ajserpin shares the standard structure of SPI, including three ß-sheets and eight α-helices. The deduced amino acid sequences of Ajserpin had no nuclear location signal and signal peptide structure. The phylogenetic tree and immunofluorescence showed that Ajserpin belonged to the clade B subfamily and was mainly located in the cytoplasm and nucleus. Sequence comparison and protein inhibition experiments showed that the active site (P1-P1' site) of Ajserpin was Arginine and Serine, which displayed inhibitory activity toward trypsin in a dose-dependent manner. Tissue distribution analysis showed that Ajserpin transcripts were constitutively expressed in all examined tissues with the peak in the body wall. Ajserpin mRNA transcripts could be induced in Vibrio splendidus-challenged sea cucumber or lipopolysaccharide-exposed coelomocytes. Furthermore, Ajserpin knockdown by small interfering RNAs could inhibit coelomocytes apoptosis. All our results revealed that Ajserpin might serve as an immune regulator in sea cucumber.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/imunologia , Sequência de Aminoácidos , Animais , Perfilação da Expressão Gênica , Filogenia , Alinhamento de Sequência , Inibidores de Serina Proteinase/química , Stichopus , Vibrio/fisiologia
11.
Fish Shellfish Immunol ; 102: 350-360, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32371258

RESUMO

Succinate dehydrogenase (SDH) is a mitochondrial enzyme with the unique ability to participate in both the tricarboxylic acid cycle and the electron transport chain to produce reactive oxygen species (ROS). The B subunit of SDH is required for succinate oxidation, which is critical for pro-inflammatory response. In this study, we cloned the iron-sulfur protein subunit of SDH from Apostichopus japonicus (denoted as AjSDHB) via RACE technology and explored its role in the immune system as a response to pathogen infection. The full-length cDNA of AjSDHB was 1442 bp with a complete open reading frame of 858 bp encoding 286 amino acids. Simple modular architecture research tool analysis revealed that AjSDHB contained two conserved domains, including a 2Fe-2S iron-sulfur cluster binding domain and a 4Fe-4S dicluster domain, without a signal peptide. Multiple sequence alignment demonstrated that AjSDHB shared a high degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. Phylogenetic analysis supported the finding that AjSDHB is a new member of the SDHB protein subfamily. Tissue distribution analysis revealed that AjSDHB was expressed in all examined tissues and particularly highly expressed in the muscles. AjSDHB transcripts were markedly induced in coelomocytes both by Vibrio splendidus challenge in vivo and lipopolysaccharide exposure in vitro. Function analysis showed that siRNA-mediated AjSDHB knockdown could substantially reduce the mitochondrial membrane potential (ΔΨm) and further decrease mitochondrial ROS production in A. japonicus coelomocytes. By contrast, AjSDHB overexpression considerably increased ΔΨm and mitochondrial ROS production of A. japonicus coelomocytes. These results supported the idea that AjSDHB is involved in the innate immunity of A. japonicus through its participation in mitochondrial ROS generation.


Assuntos
Proteínas Ferro-Enxofre/genética , Espécies Reativas de Oxigênio/metabolismo , Stichopus/genética , Stichopus/imunologia , Stichopus/metabolismo , Succinato Desidrogenase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas Ferro-Enxofre/metabolismo , Lipopolissacarídeos/farmacologia , Mitocôndrias/metabolismo , Filogenia , Alinhamento de Sequência , Stichopus/enzimologia , Succinato Desidrogenase/genética , Vibrio/fisiologia
12.
Dev Comp Immunol ; 109: 103694, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32283109

RESUMO

The sedoheptulose kinase carbohydrate kinase-like protein (CARKL) is critical for immune cell activation, reactive oxygen species (ROS) production, and cell polarization by restricting flux through the pentose phosphate pathway (PPP). To date, little is known about CARKL in regulating immune responses in marine invertebrates. In this study, we first cloned and characterized the CARKL gene from Apostichopus japonicus (designated as AjCARKL). Time-course analysis revealed that Vibrio splendidus challenge in vivo and lipopolysaccharide stimulation in vitro significantly downregulated AjCARKL mRNA expression. Furthermore, AjCARKL overexpression in cultured coelomocytes not only significantly inhibited the mRNA expression level of the rate-limiting enzyme glucose-6-phosphate dehydrogenase of the PPP but sharply decreased coelomocyte proliferation, ROS production, and phagocytic rate. Additionally, AjCARKL overexpression in mouse peritoneal macrophages (RAW264.7 cells) significantly attenuated the intracellular ROS production and sensitized the M2 phenotype macrophage polarization. These results revealed that AjCARKL serves as a rheostat for cellular metabolism and is required for proper immune response by negatively regulating PPP in pathogen-challenged A. japonicus.


Assuntos
Heptoses/metabolismo , Imunidade Inata/imunologia , Via de Pentose Fosfato , Fosfotransferases/metabolismo , Pepinos-do-Mar/imunologia , Animais , Expressão Gênica/genética , Expressão Gênica/imunologia , Glucosefosfato Desidrogenase/genética , Glucosefosfato Desidrogenase/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Lipopolissacarídeos/imunologia , Macrófagos/metabolismo , Camundongos , Fosfotransferases/genética , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Pepinos-do-Mar/genética , Pepinos-do-Mar/microbiologia , Vibrio/imunologia , Vibrio/fisiologia
13.
Dev Comp Immunol ; 104: 103541, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31733219

RESUMO

The NOD-like receptor family member 4 (NLRC4) plays a crucial role in regulating the innate immune responses and cell apoptosis pathways in vertebrates. However, the function of the NLRC4 counterpart in invertebrates remains elusive. In this study, the first NLRC4-like gene was cloned and characterized from Apostichopus japonicus (designated as AjNLRC4-like) with RACE technology. The full-length cDNA of the AjNLRC4-like gene was 4065 bp, which consisted of a 5'-untranslated region (UTR) of 387 bp, a 3'-UTR of 159 bp, and a complete open reading frame of 3519 bp encoding a polypeptide of 1172 amino acid residues. Structural analysis revealed that AjNLRC4-like protein contained two IG domains (31-132 and 251-353 amino acids), a common NACHT (600-757 amino acids), and no LRR and CARD domains compared with the vertebrate NLRC4. Spatial expression analysis revealed that the AjNLRC4-like was ubiquitously expressed in all the examined tissues with larger magnitude in the intestine. The mRNA expression of the AjNLRC4-like was significantly upregulated by 2.86- and 2.92-fold at 24 h after the Vibrio splendidus challenge in vivo and the lipopolysaccharide (LPS) treatment in vitro, respectively, compared with that of the control group. The purified recombinant AjNLRC4-NACHT protein displayed higher binding activities to various pathogen-associated molecular patterns (PAMPs), including LPS, peptidoglycan, and mannan. Further functional analysis indicated that the apoptosis of coelomocytes was significantly inhibited by 11.37% after specific AjNLRC4-like siRNA treatment, and the inflammatory caspase Ajcaspase-1 was synchronously decreased by 0.28-fold in the same condition. Collectively, these results supported that the uncanonical AjNLRC4-like protein may share similar functions to the vertebrate NLRC4 as the pattern recognition receptor and in mediating coelomocyte apoptosis in the pathogen-challenged sea cucumber.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas de Ligação ao Cálcio/genética , Proteínas NLR/genética , Receptores de Reconhecimento de Padrão/genética , Pepinos-do-Mar/imunologia , Vibrioses/imunologia , Vibrio/fisiologia , Animais , Apoptose , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Clonagem Molecular , Humanos , Imunidade Inata , Proteínas NLR/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , RNA Interferente Pequeno/genética , Receptores de Reconhecimento de Padrão/metabolismo , Transcriptoma , Regulação para Cima
14.
Fish Shellfish Immunol ; 97: 27-33, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31843700

RESUMO

Myelocytomatosis viral oncogene (MYC), a multifunctional transcription factor, (TF) exerts various physiological and pathological effects on animals. AjMYC could induce coelomocyte apoptosis in Apostichopus japonicus, but the underlying molecular mechanism remains poorly understood. In this study, the promoter sequence of apoptosis regulator Bcl-2-associated X (Bax) was cloned by genomic walking. The AjBax promoter region spaning 1189 bp, containing several transcription factor binding sites, included four potential E-boxes (-1030 bp to -1019 bp, -785 bp to -774 bp, -570 bp to -559 bp, -100 bp to -89 bp), two P53 binding sites (-439 bp to -430 bp, -845 bp to -836 bp), and one NF-κB site (-191 bp to -182 bp). Transient transfection of EPC cells with 5'-deletion constructs linked to luciferase reporter revealed that the region -1189/+454 contributed importantly to the expression of the AjBax. In addition, the AjBax promoter was induced by LPS, PGN or MAN. The four potential MYC binding sites were cotransfected with AjMYC in EPC cell whether AjMYC could activate AjBax expression as a transcriptional factor. Only P1 (-1189/+454) fragment containing the first MYC binding site transfection increased the luciferase activity by 2.08-fold (p < 0.01) compared with the control. The first MYC binding site -1030/-1019 was essential to induce AjBax transcription. Further functional assay indicated that AjBax was significantly induced by 3.54-fold increase (p < 0.01) after AjMYC overexpression in sea cucumber coelomocytes. All our findings supported that AjMYC could regulate coelomocyte apoptosis by directly targeting AjBax expression in A. japonicus.


Assuntos
Apoptose/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc/genética , Stichopus/genética , Proteína X Associada a bcl-2/genética , Animais , Sítios de Ligação , Clonagem Molecular , Regulação da Expressão Gênica , Imunidade Inata , RNA Interferente Pequeno , Transdução de Sinais
15.
Dev Comp Immunol ; 103: 103533, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31669879

RESUMO

Apoptosis is an evolutionarily conserved immune response and plays a fundamental role in many physiological processes. In this study, the important apoptosis regulator of Bcl-2 homolog from economic marine animal Apostichopus japonicus (AjBcl-2) was cloned and its roles in V. splendidus infection explored. The AjBcl-2 gene contains 3263 nucleotides, with a 5' UTR of 519 bp, an ORF of 660 bp encoding 219 aa sequences, and a 3' UTR of 2084 bp. The AjBcl-2 protein shared a conserved Bcl domain and three Bcl-2 homology domains by SMART program. In healthy sea cucumbers, AjBcl-2 mRNA was expressed in all examined tissues with the peak expression in coelomocytes. The mRNA and protein levels of AjBcl-2 in coelomocytes were depressed at 12 h and 24 h, and induced at 48 h post V. splendidus challenge. In the same conditions, coelomocytes apoptosis rates were significantly increased at 24 h and decreased at 48 h. Moreover, siRNA-mediated AjBcl-2 knockdown significantly increased the coelomocytes apoptosis rates, which could be partially recovered by recombinant AjBcl-2 administration. Furthermore, there was an increase in the AjCyt c protein expression coupled with the downregulation expression of AjBcl-2 post AjBcl-2 silencing. Our results suggested that AjBcl-2 suppressed apoptosis by preventing the AjCyt c release in coelomocytes, and thus mediating V. splendidus infection in sea cucumbers.


Assuntos
Apoptose/imunologia , Citocromos c/imunologia , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Pepinos-do-Mar/imunologia , Vibrioses/veterinária , Animais , Citocromos c/metabolismo , Imunidade Inata/imunologia , Pepinos-do-Mar/parasitologia , Vibrio/imunologia , Vibrioses/imunologia
16.
Microbiol Res ; 230: 126350, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31629270

RESUMO

Outer membrane protein U (OmpU) is a major porin from Vibrio alginolyticus and has been considered a vaccine candidate against infection by V. alginolyticus. After pre-incubated with polyclonal antibody against rOmpU, V. alginolyticus showed a 78% decrease in extracellular iron level, suggesting that interruption of OmpU could increase intracellular iron level. The mRNA expression of ompU under iron-limited conditions was determined using real-time reverse transcriptase PCR. The mRNA level of ompU was downregulated to 0.27-, 0.036- and 0.019-fold after the addition of the iron chelator 2,2'-bipyridyl for 10, 30 and 60 min, respectively. In addition, the promoter of ompU contained a ferric uptake regulator (Fur) binding site, which revealed the potential regulation of ompU by Fur and iron. Fur from V. alginolyticus was purified and used for electrophoretic mobility shift assay. The result showed that in the absence of Fe2+, purified recombinant Fur could specifically bind to the promoter DNA of ompU, while in the presence of Fe2+, the binding of Fur and the promoter DNA was suppressed. Our study preliminarily explored the function of OmpU in iron balance in V. alginolyticus, and these findings were helpful in understanding iron metabolism in V. alginolyticus.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Ferro/metabolismo , Vibrio alginolyticus/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Ligação Proteica , Vibrio alginolyticus/genética
17.
Dev Comp Immunol ; 102: 103487, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31472172

RESUMO

Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.


Assuntos
Genes myc , Proteínas Proto-Oncogênicas c-myc/metabolismo , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Lipopolissacarídeos/farmacologia , Peso Molecular , Fases de Leitura Aberta , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-myc/genética , Alinhamento de Sequência , Distribuição Tecidual , Vibrio/patogenicidade
18.
J Microbiol Biotechnol ; 29(6): 973-983, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31216793

RESUMO

It is well known that iron is critical for bacterial growth and pathogenic virulence. Due to chemical similarity, Ga3+ competes with Fe3+ for binding to compounds that usually bind Fe3+, thereby interfering with various essential biological reactions. In our present study, gallium(III) nitrate [Ga(NO3)3] could repress the growth of V. splendidus Vs without complete inhibition. In the presence of Ga(NO3)3, the secretion of homogentisic acid-melanin (HGAmelanin) in V. splendidus Vs cells could be increased by 4.8-fold, compared to that in the absence of Ga(NO3)3. HGA-melanin possessed the ability to reduce Fe3+ to Fe2+. In addition, HGA-melanin increased the mRNA levels of feoA and feoB, genes coding Fe2+ transport system proteins to 1.86- and 6.1-fold, respectively, and promoted bacterial growth to 139.2%. Similarly, the mRNA expression of feoA and feoB was upregulated 4.11-fold and 2.71-fold in the presence of 640 µM Ga(NO3)3, respectively. In conclusion, our study suggested that although Ga(NO3)3 could interfere with the growth of V. splendidus Vs, it could also stimulate both the production of Fe3+-reducing HGA-melanin and the expression of feoA and feoB , which facilitate Fe2+ transport in V. splendidus Vs.


Assuntos
Gálio/farmacologia , Ferro/metabolismo , Vibrio/efeitos dos fármacos , Proteínas de Bactérias/genética , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte de Cátions/genética , Relação Dose-Resposta a Droga , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Ácido Homogentísico/química , Ácido Homogentísico/metabolismo , Ácido Homogentísico/farmacologia , Melaninas/química , Melaninas/metabolismo , Melaninas/farmacologia , Oxirredução , Sideróforos/metabolismo , Vibrio/crescimento & desenvolvimento , Vibrio/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-30897459

RESUMO

Skin ulceration syndrome (SUS) of sea cucumber is a common and serious disease that affects the stable development of Apostichopus japonicus in the culture industry. The part of sea cucumber that suffers from major injury and is directly observed is the body wall, in which protein variations should be the most direct evidence of the disease. To understand the response mechanisms of A. japonicus in SUS progression, we investigated protein changes in the body wall of diseased A. japonicus induced by Vibrio splendidus and individuals with natural diseases by isobaric tags for relative and absolute quantification (iTRAQ). About 119 proteins were identified in the two iTRAQ groups. A comparison of the protein expression profiles among two SUS conditions revealed that the mode of action induced by V. splendidus (Vs-SUS) was completely different from those in individuals with natural disease (ND-SUS). Most of the differentially expressed proteins (DEPs) (33 in 37 DEPs) were significantly depressed in the Vs-SUS group. Only 13 proteins in 27 DEPs showed similar trend to those in the ND-SUS group. Many important proteins involved in major intercellular signaling pathways associated with SUS disease were identified based on the KEGG and GO database search. Many proteins were located in the mitochondria and mainly involved in the oxidative stress pathway. Glutathione metabolism pathway was associated with reactive oxygen (ROS) production in the ND-SUS group. In the Vs-group, most of the proteins were concentrated in the cytoplasm and were related to immunity and extracellular matrix stability. In the ND-SUS group, the activity of key enzymes (CAT, GPx) that eliminate mitochondrial ROS production and structural stable protein (HSP60, HSP10) decreased, whereas those of complement proteins (C3, C3-2) that promoted ROS production was upregulated. This finding supported that oxidative damage caused by ROS might be the main effector for SUS in the ND-SUS group. The challenge with V. splendidus led to the breakdown of the defense capability of sea cucumber and suppressed the expression of immune-related proteins, such as C-type lectin, caspase, STAT, and cystatin. The downregulation of TIMP led to MMP1 overexpression. Members of the MMP family could directly degrade the extracellular matrix, which may be the main reason for the cell matrix degradation and induced SUS disease in the Vs-SUS group. Hence, ROS and extracellular matrix degradation enzymes could play important roles in the formation of SUS in sea cucumber. Results provide insights into the complex molecular mechanism of SUS in sea cucumber.


Assuntos
Stichopus/genética , Stichopus/microbiologia , Transcriptoma , Animais , Perfilação da Expressão Gênica , Proteômica , Dermatopatias/genética , Dermatopatias/microbiologia , Dermatopatias/veterinária , Vibrio/fisiologia , Vibrioses/genética , Vibrioses/microbiologia , Vibrioses/veterinária
20.
Fish Shellfish Immunol ; 87: 839-846, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30797067

RESUMO

Macrophage migration inhibitory factor (MIF) is a cytokine and plays critical roles in inflammatory and immune responses in vertebrates. However, its functional role in inflammation has not been well studied in invertebrates. In the present study, we cloned and characterized MIF gene from Apostichopus japonicus by RNA-seq and RACE approaches (designated as AjMIF). A 1047 bp fragment representing the full-length cDNA of AjMIF was obtained, including a 5' UTR of 100 bp, an open reading frame (ORF) of 366 bp encoding a polypeptide of 121 amino acids residues with the molecular weight of 13.43 kDa and theoretical isoelectric point of 5.63 and a 3' UTR of 580 bp. SMART analysis showed that AjMIF has conserved MIF domain (2-117aa) similar to its mammalian counterparts. The amino terminal proline residue (P2) and invariant lysine residue (K33) which are critical active sites of tautomerase activity in mammalian MIF were also detected. Phylogenic analysis and multiple alignments have shown that AjMIF shared higher degree of structural conservation and sequence identities with other counterparts from invertebrates and vertebrates. For Vibrio splendidus challenged sea cucumber, the peak expression of AjMIF mRNAs in coelomocytes were detected at 6 h (23.5-fold) and remained at high levels until 24 h (4.01-fold), and returned to normal level at 48 h in comparison with that of the control group. Similarly, a significant increase in the relative mRNA levels of AjMIF was also found in 10 µg mL-1 LPS-exposed primary cultured coelomocytes. Functional analysis indicated that recombinant AjMIF incubation could promote inflammatory response related genes of Ajp105, AjVEGF, AjMMP1 and AjHMGB3 expression by 1.35-fold, 1.36-fold, 1.83-fold and 1.27-fold increase, respectively, which was consistent with the findings in vertebrate MIFs. All these results collectively suggested that AjMIF had a similar function to MIFs in higher animals and might serve as a candidate cytokine in inflammatory regulation in sea cucumber.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Stichopus/genética , Stichopus/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Perfilação da Expressão Gênica , Fatores Inibidores da Migração de Macrófagos/genética , Filogenia , Alinhamento de Sequência , Vibrio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA