RESUMO
Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.
Assuntos
Melanoma , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio , Neoplasias Cutâneas , Animais , Melanoma/terapia , Melanoma/patologia , Melanoma/metabolismo , Melanoma/tratamento farmacológico , Humanos , Camundongos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Nitrogênio/metabolismo , Gases em Plasma/uso terapêutico , Apoptose , Agulhas , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos NusRESUMO
Expression of Concern for 'One-pot synthesis of acid-degradable polyphosphazene prodrugs for efficient tumor chemotherapy' by Na Zhou et al., J. Mater. Chem. B, 2020, 8, 10540-10548, https://doi.org/10.1039/D0TB01992E.
RESUMO
Melanoma that develops adaptive resistance to MAPK inhibitors (MAPKi) through transcriptional reprograming-mediated phenotype switching is associated with enhanced metastatic potential, yet the underlying mechanism of this improved invasiveness has not been fully elucidated. In this study, we show that MAPKi-resistant melanoma cells are more motile and invasive than the parental cells. We further show that LAMB3, a ß subunit of the extracellular matrix protein laminin-332 is upregulated in MAPKi-resistant melanoma cells and that the LAMB3-Integrin α3/α6 signaling mediates the motile and invasive phenotype of resistant cells. In addition, we demonstrate that SOX10 deficiency in MAPKi-resistant melanoma cells drives LAMB3 upregulation through TGF-ß signaling. Transcriptome profiling and functional studies further reveal a FAK/MMPs axis mediates the pro-invasiveness effect of LAMB3. Using a mouse lung metastasis model, we demonstrate LAMB3 depletion inhibits the metastatic potential of MAPKi-resistant cells in vivo. In summary, this study identifies a SOX10low/TGF-ß/LAMB3/FAK/MMPs signaling pathway that determines the migration and invasion properties of MAPKi-resistant melanoma cells and provide rationales for co-targeting LAMB3 to curb the metastasis of melanoma cells in targeted therapy.
Assuntos
Melanoma , Humanos , Animais , Melanoma/patologia , Regulação para Cima , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição SOXE/genética , Fatores de Transcrição SOXE/metabolismoRESUMO
Psoriasis is a common, chronic, and relapsing inflammatory skin disease characterized by hyperproliferation of keratinocytes (KCs) and infiltration of immune cells. The pathogenesis of psoriasis is complex, and the exact mechanism remains partially understood. In this study, we showed that the forkhead box family protein, FOXE1, had increased expression in lesional skins compared with nonlesional skin from patients with psoriasis. FOXE1 expression was also increased in an imiquimod-induced psoriatic mouse model as well as in M5-stimulated KCs. Using combinational approaches of knockdown and overexpression of FOXE1, we demonstrated that FOXE1 may promote the proliferation of KCs by facilitating G1/S transition and activating extracellular signal-regulated kinase 1/2 signaling pathway. In addition, knockdown of FOXE1 reduced the production of IL-1ß, IL-6, and TNF-α by KCs. RNA-sequencing profiling identified WNT5A as a potential downstream effector of FOXE1. Knockdown of WNT5A inhibited the proliferation of KCs; reduced the production of IL-1ß, IL-6, and TNF-α by KCs; and mitigated the growth-promoting effect of FOXE1 in FOXE1-overexpressed KCs. Finally, depletion of FOXE1 by lentiviral delivery of small hairpin RNAs or genetic approach ameliorated dermatitis symptoms in imiquimod-induced psoriasis-like mouse models. Taken together, our results indicated that FOXE1 participates in the pathogenesis of psoriasis and can serve as a target of psoriasis treatment.
Assuntos
Fatores de Transcrição Forkhead , Psoríase , Proteína Wnt-5a , Humanos , Psoríase/metabolismo , Psoríase/patologia , Proliferação de Células , Queratinócitos/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Wnt-5a/metabolismo , Técnicas de Silenciamento de Genes , Animais , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Masculino , Feminino , Criança , Adolescente , AdultoRESUMO
PURPOSE: Posterior capsular opacification is the most common complication after cataract surgery. Abnormal proliferation, migration, epithelial-mesenchymal transition, and extracellular matrix synthesis of residual lens epithelial cells are considered to be the main pathogenic mechanisms. Hepatocyte nuclear factor 4α has been reported to regulate epithelial-mesenchymal transition in different tumors. Our objective was to investigate the role and mechanism of hepatocyte nuclear factor 4α in posterior capsular opacification. METHODS: Hepatocyte nuclear factor 4α expression was tested in posterior capsular opacification rat lens capsules and cell models. Hepatocyte nuclear factor 4α was knocked down using small hairpin RNA. Cell viability was measured by Cell Counting Kit-8 assay. Cell migration ability was evaluated by wound healing and Transwell assays. Epithelial-mesenchymal transition markers were detected by Western blotting. Transcriptome sequencing was used to screen for downstream effectors of hepatocyte nuclear factor 4α. Chromatin immunoprecipitation and a dual luciferase reporter assay were used to determine the binding of hepatocyte nuclear factor 4α to the MMP2 promoter region. RESULTS: Hepatocyte nuclear factor 4α was downregulated in posterior capsular opacification tissue and cell models. In vitro studies showed that hepatocyte nuclear factor 4α deletion facilitated cell proliferation, migration, and epithelial-mesenchymal transition protein marker expression in lens epithelial cells. Hepatocyte nuclear factor 4α knockdown promoted epithelial-mesenchymal transition and migration of lens epithelial cells via MMP2. Mechanistically, hepatocyte nuclear factor 4α decreased MMP2 expression by binding to the MMP2 promoter region. Hepatocyte nuclear factor 4α deletion also promoted epithelial-mesenchymal transition in rat lens capsules. CONCLUSIONS: We demonstrated that hepatocyte nuclear factor 4α inhibited epithelial-mesenchymal transition of lens epithelial cells by directly binding to the MMP2 promoter region and inhibiting the expression of MMP2, thus leading to retardation of posterior capsular opacification formation and development, suggesting that hepatocyte nuclear factor 4α is a potential therapeutic target for posterior capsular opacification.
Assuntos
Opacificação da Cápsula , Fator 4 Nuclear de Hepatócito , Cápsula do Cristalino , Cristalino , Metaloproteinase 2 da Matriz , Animais , Ratos , Opacificação da Cápsula/metabolismo , Cápsulas/metabolismo , Movimento Celular , Proliferação de Células , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Cápsula do Cristalino/patologia , Cristalino/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismoRESUMO
Psoriasis is a chronic inflammatory skin disease, and elevation of proinflammatory cytokine levels is a critical driver of the pathogenesis of psoriasis. Extracellular cold-inducible RNA-binding protein (eCIRP) has been shown to play a role in various acute and chronic inflammatory diseases. C23, a short peptide derived from CIRP, competitively binds CIRP receptors and reduces damage in inflammatory diseases. However, the effect of eCIRP in psoriasis has not been studied. In the present study, we investigated the role of eCIRP in the expression of proinflammatory cytokines in keratinocytes. Our data show that eCIRP expression was increased in the sera of psoriasis patients and imiquimod- (IMQ-) induced psoriatic mice and cells stimulated with proinflammatory cytokines (IL-1α, IL-17A, IL-22, oncostatin M, and TNF-α; mix M5). Recombinant human CIRP (rhCIRP) promoted the expression of the proinflammatory cytokines TNF-α, IL-6, and IL-8 and the activation of NF-kappaB (NF-κB) and ERK1/2 in cultured keratinocytes. We then found that the above effects of eCIRP could be blocked by C23 in both normal keratinocytes and M5-stimulated psoriatic keratinocytes. In addition, in vivo experiments revealed that C23 could effectively ameliorate IMQ-induced psoriatic dermatitis. TNF-α and IL-6 mRNA expressions were reduced in the skin lesions of mice with C23-treated IMQ-induced psoriasis, and this effect was accompanied by inhibition of the NF-κB and ERK1/2 signaling pathways. In summary, eCIRP plays an important role in the pathogenesis of psoriasis and may become a new target for psoriasis treatment.
Assuntos
NF-kappa B , Psoríase , Animais , Humanos , Imiquimode , Interleucina-17/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinócitos/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , NF-kappa B/metabolismo , Oncostatina M/metabolismo , Psoríase/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Posterior capsular opacification (PCO) can cause postoperative visual loss after cataract surgery. Residual human lens epithelial cell (HLEC) proliferation, migration, epithelial-mesenchymal transition (EMT) and synthesis of extracellular matrix (ECM) are the entitative reasons for PCO. Low expression of Ral-binding protein 1-associated Eps domain-containing 2 (REPS2) and high levels of basic fibroblast growth factor (b-FGF) were observed in the lens and postoperative aqueous humor of cataract patients. REPS2 was identified as a negative regulator in growth factor signaling; however, its function in HLECs is unknown. This was first investigated in the present study by evaluating REPS2 expression in anterior lens capsules from cataract patients, a mouse cataract model, and HLE-b3 cells. The biological function of REPS2 in HLE-B3 cells was assessed by REPS2 silencing and Cell Counting Kit 8, wound healing, Transwell migration, F-actin staining, G-protein pulldown and western blot assays. In the present study, REPS2 was significantly downregulated in human and mouse cataract capsules and H2O2-treated HLE-B3 cells. REPS2 knockdown increased fibronectin, type I collagen, and α-smooth muscle actin expression levels and stimulated HLECs proliferation and migration; these effects were enhanced by FGF treatment and accompanied with focal adhesion kinase (FAK) phosphorylation, cell division cycle 42 (Cdc42) activation, focal adhesion protein upregulation, and F-actin cytoskeleton reorganization. However, treatment with the FAK inhibitor PF573228 abolished these effects. Thus, REPS2 downregulation in cataract HLECs induces their proliferation and facilitates FGF-induced ECM synthesis, EMT, cell adhesion and migration by activating FAK/Cdc42 signaling, which may underlie PCO pathogenesis.
Assuntos
Proteínas de Ligação ao Cálcio , Opacificação da Cápsula , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Opacificação da Cápsula/metabolismo , Opacificação da Cápsula/patologia , Cápsulas/metabolismo , Cápsulas/farmacologia , Adesão Celular , Movimento Celular , Proliferação de Células , Regulação para Baixo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Fator 2 de Crescimento de Fibroblastos/farmacologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Humanos , Peróxido de Hidrogênio/farmacologia , Camundongos , Proteína cdc42 de Ligação ao GTPRESUMO
Purpose: Age-related cataract (ARC) is a major cause of vision impairment worldwide. The E3 ubiquitin ligase RING finger protein 157 (RNF157) is involved in regulating cell survival and downregulated in human cataractous lens samples. However, the function of RNF157 in cataracts remains unclear. This study aimed to determine the role of RNF157 in ARC. Methods: Real-time polymerase chain reaction (PCR) and Western blotting were used to analyze the expression of RNF157 in clinical lens capsules, rat cataract models, and oxidative stress cell models. Western blot analysis and flow cytometry were used to evaluate cell apoptosis. Co-IP assay, protein stability assay, and ubiquitination assay were used to detect the interaction between RNF157 and its substrate p53. Results: The expression of RNF157 was downregulated in human cataract samples, UVB-induced rat cataract model, and H2O2-treated human lens epithelial cells (LECs). Ectopic expression of RNF157 protected LECs from H2O2-induced apoptosis. In contrast, knockdown of RNF157 enhanced oxidative stress-induced apoptotic cell death. Moreover, silence of RNF157 in the rat ex vivo lens model exacerbated lens opacity. Mechanistically, RNF157 causes ubiquitination and degradation of the tumor antigen p53. Overexpression of p53 eliminated the antiapoptotic effects of RNF157, whereas p53 knockdown rescued RNF157 silencing-induced cell death. Conclusions: Our findings revealed that reduced RNF157 expression promoted LEC apoptosis by upregulating p53 in cataracts, suggesting that the regulation of RNF157 expression may serve as a potential therapeutic strategy for cataracts.
Assuntos
Catarata , Cristalino , Animais , Apoptose , Catarata/metabolismo , Células Epiteliais/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Cristalino/metabolismo , Ratos , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Bmf contributes to the onset of anoikis by translocating from cytoskeleton to mitochondria when cells lose attachment to the extracellular matrix. However, the structural details of Bmf cytoskeleton tethering and the control of Bmf release upon loss of anchorage remained unknown. Here we showed that cell detachment induced rapid and sustained activation of p38 MAPK in mammary epithelial cell lines. Inhibition of p38 signaling or Bmf knockdown rescued anoikis. Activated p38 MAPK could directly phosphorylate Bmf at multiple sites including a non-proline-directed site threonine 72 (T72). Crystallographic studies revealed that Bmf T72 directly participated in DLC2 binding and its phosphorylation would block Bmf/DLC2 interaction through steric hindrance. Finally, we showed that phosphomimetic mutation of T72 enhanced Bmf apoptotic activity in vitro and in a knock-in mouse model. This work unraveled a novel regulatory mechanism of Bmf activity during anoikis and provided structural basis for Bmf cytoskeleton tethering and dissociation.
Assuntos
Anoikis , Proteínas Quinases p38 Ativadas por Mitógeno , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Células Epiteliais/metabolismo , Camundongos , Fosforilação , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
The long noncoding RNA (lncRNA) SAMMSON is required for human melanoma cell growth and survival. However, whether SAMMSON regulates the response of mutant BRAF melanoma cells to RAF inhibitors remains unknown. In this work, we showed that SAMMSON is rapidly induced upon inhibition of ERK signaling, and SAMMSON overexpression conferred resistance to vemurafenib-induced cytotoxicity in melanoma cells. SOX10 mediated transcriptional induction of SAMMSON by vemurafenib, and SOX10 sumoylation at K55 was essential for this function. In addition, depletion of SAMMSON activated p53 signaling, which is dependent on the SAMMSON-interacting protein CARF. Depletion of SAMMSON sensitized mutant BRAF melanoma cells to RAF inhibitors in vitro and in vivo, while CARF knockdown reversed the enhanced sensitivity. In summary, these findings suggest that SAMMSON may function as a new mediator of adaptive resistance to RAF inhibitors in melanoma by modulating CARF-p53 signaling. SIGNIFICANCE: This study highlights the role of a SAMMSON/CARF/p53 signaling axis in modulating the adaptive resistance of mutant BRAF melanoma to RAF inhibitors.
Assuntos
Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Melanoma/tratamento farmacológico , Mutação , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , RNA Longo não Codificante/genética , Vemurafenib/farmacologia , Animais , Antineoplásicos/farmacologia , Apoptose , Ciclo Celular , Proliferação de Células , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas Proto-Oncogênicas B-raf/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
In order to maximize the therapeutic effect and and minimize the systemtic side effect of the small molecule anticancer drugs, biodegradable drug delivery systems (DDSs) that respond to tumor microenvironment (TME) have attracted significant attention. Herein, a novel redox/pH dual-responsive and biodegradable polyphosphazene (PPZ) nano-prodrugs have been prepared via one-pot crosslinking of vanillin modified DOX (VMD, acid-sensitive) and 4,4'-dihydroxydiphenyl disulfide (HPS, GSH-responsive) with hexachlorocyclotriphosphazene (HCCP). The phenol groups of the as-synthesized VMD and HPS have high nucleophilic substitution activity towards HCCP under base catalyst and afforded PPZ nano-prodrugs, denoted as HCCP-VMD-HPS, with a high drug loading ratio of up to 56.4 %. As expected, the skeleton of the PPZ consisting of imine bonds in VMD and the disulfide bonds in HPS and cyclotriphosphazenes inclined to be decomposed in low pH conditions and high level of GSH environments. The antitumor drug DOX was found to be controlled released in TME conditions (extracellular, pHâ¼6.8 and endosomes, lysosomes pHâ¼5.0 with â¼10 mM GSH), rather than neutral physiological conditions (pH 7.4 with â¼20 µM GSH). Moreover, the resulting HCCP-VMD-HPS nano-prodrug have obvious cytotoxicity to cancer cells while a negligible side effect to normal cells. We therefore believe that the prepared redox/pH dual-responsive and biodegradable PPZ DDSs have great potential in various field.
Assuntos
Neoplasias , Pró-Fármacos , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Compostos Organofosforados , Oxirredução , PolímerosRESUMO
DUSP6 functions as an important negative feedback component of the MAPK/ERK signaling pathway. Although DUSP6 expression is tightly regulated by ERK1/2 signaling, the molecular mechanism of this regulation remains partially understood. In this work, we show that the transcriptional repressor CIC functions downstream of the ERK1/2 signaling to negatively regulate DUSP6 expression. CIC directly represses DUSP6 transcription by binding to three cis-regulatory elements (CREs) in DUSP6 promoter. p90RSK, a downstream target of ERK1/2, phosphorylates CIC at S173 and S301 sites, which creates a 14-3-3 recognition motif, resulting in 14-3-3-mediated nuclear export of CIC and derepression of DUSP6. Finally, we demonstrate that the oncogenic CIC-DUX4 fusion protein acts as a transcriptional activator of DUSP6 and its nuclear/cytoplasmic distribution remains regulated by ERK1/2 signaling. These results complete an ERK1/2/p90RSK/CIC/DUSP6 negative feedback circuit and elucidate the molecular mechanism of how RTK/MAPK signaling harnesses the transcriptional repressor activity of CIC in mammalian cells.
RESUMO
In order to improve the therapeutic efficacy and reduce the side effects of anticancer drugs, stimuli-responsive and biodegradable drug-delivery systems have attracted significant attention in the past three decades. Herein, we report acid-responsive and degradable polyphosphazene nano-prodrugs synthesized via a one-pot cross-linking reaction of 4-hydroxybenzhydrazide-modified doxorubicin (BMD) with hexachlorocyclotriphosphazene (HCCP). The phenol groups in the as-synthesized BMD exhibited a high reactivity towards HCCP and in the presence of a basic catalyst the determined drug loading ratio of the nanoparticles, denoted as HCCP-BMD, was up to 85.64%. Interestingly, the hydrazone bonds in BMD and the skeleton of polyphosphazene tended to break down in acidic environments, and the antitumor active drug DOX was found to be released in an acidic tumor microenvironment (pH â¼ 6.8 for extracellular, and pH â¼ 5.0 for endosomes and lysosomes). The resulting HCCP-BMD prodrug exhibited high cytotoxicity to HeLa cells and could effectively suppress tumor growth, with negligible damage to normal tissues. We therefore believe that this acid- degradable polyphosphazene prodrug may offer great potential in various biomedical fields.
Assuntos
Antineoplásicos/metabolismo , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Compostos Organofosforados/metabolismo , Polímeros/metabolismo , Pró-Fármacos/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Doxorrubicina/administração & dosagem , Doxorrubicina/síntese química , Doxorrubicina/metabolismo , Feminino , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organofosforados/administração & dosagem , Compostos Organofosforados/síntese química , Polímeros/administração & dosagem , Polímeros/síntese química , Pró-Fármacos/administração & dosagem , Pró-Fármacos/síntese química , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Microambiente Tumoral/fisiologiaRESUMO
Purpose: Cataract, a clouding of the intraocular lens, is the leading cause of blindness. The lens-expressed long noncoding RNA OIP5-AS1 was upregulated in lens epithelial cells from patients with cataracts, suggesting its pathogenic role in cataracts. We investigated the regulatory role of OIP5-AS1 in the development of cataracts as well as potential RNA binding proteins, downstream target genes, and upstream transcription factors. Methods: Clinical capsules and ex vivo and in vitro cataract models were used to test OIP5-AS1 expression. Cell apoptosis was detected using Western blots, JC-1 staining, and flow cytometry. Ribonucleoprotein immunoprecipitation-qPCR was performed to confirm the interaction of OIP5-AS1 and POLG. Chromatin immunoprecipitation-qPCR was used to determine the binding of TFAP2A and the OIP5-AS1 promoter region. Results: OIP5-AS1 was upregulated in cataract lenses and B3 cells under oxidative stress. OIP5-AS1 knockdown protected B3 cells from H2O2-induced apoptosis and alleviated lens opacity in the ex vivo cataract model. HuR functioned as a scaffold carrying OIP5-AS1 and POLG mRNA and mediated the decay of POLG mRNA. POLG was downregulated in the cataract lens and oxidative-stressed B3 cells, and POLG depletion decreased the mtDNA copy number and MMP, increased reactive oxygen species production, and sensitized B3 cells to oxidative stress-induced apoptosis. POLG overexpression reversed these effects. TFAP2A bound the OIP5-AS1 promoter and contributed to OIP5-AS1 expression. Conclusions: We demonstrated that OIP5-AS1, activated by TFAP2A, contributed to cataract formation by inhibiting POLG expression mediated by HuR, thus leading to increased apoptosis of lens epithelial cells and aggravated lens opacity, suggesting that OIP5-AS1 is a potential target for cataract treatment.
Assuntos
Apoptose/genética , Catarata/genética , DNA Polimerase gama/antagonistas & inibidores , Regulação da Expressão Gênica/fisiologia , RNA Longo não Codificante/genética , Animais , Western Blotting , Catarata/metabolismo , Catarata/patologia , Proliferação de Células , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Feminino , Citometria de Fluxo , Humanos , Peróxido de Hidrogênio/toxicidade , Cristalino/citologia , Masculino , Potenciais da Membrana , Estresse Oxidativo , Plasmídeos/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Fator de Transcrição AP-2/metabolismo , TransfecçãoRESUMO
Long non-coding RNAs (LncRNAs) play essential roles in the development of various diseases including hepatic carcinoma, melanoma, and psoriasis. Meanwhile, lncRNA-RP6-65G23.1 was upregulated in psoriasis. However, it is still unclear whether lncRNA-RP6-65G23.1 expression is upregulated and contributes to keratinocytes proliferation and apoptosis, and which mechanisms are responsible for these processes. The aims of this study are to address these issues. RP6-65G23.1 was significantly upregulated in M5-stimulated keratinocytes and stimulated the proliferation and inhibited the apoptosis of HaCaT cells. Knockdown of RP6-65G23.1 resulted in defects of growth and increased rates of apoptosis in HaCaT cells, while overexpression of RP6-65G23.1 manifested the opposite effects. Consistently, the expression of antiapoptotic proteins Bcl-xl and Bcl2 were decreased in RP6-65G23.1-knockdown cells but elevated in RP6-65G23.1 overexpression cells. In addition, RP6-65G23.1 depletion blunted the activity of extracellular regulated kinase 1/2 (ERK1/2) and AKT signaling pathways and induced G1 /S-growth arrest. By contrast, overexpression of RP6-65G23.1 activates the ERK1/2 and AKT signaling pathways and inhibits the expression of p21 and p27 in an AKT-dependent manner leading to promote the G1/S progression. Our results suggested that lncRNA-RP6-65G23.1 would contribute to the pathogenesis of psoriasis by regulating the proliferation and apoptosis of keratinocytes via the p-ERK1/2 and p-AKT pathways.
Assuntos
Regulação da Expressão Gênica , Queratinócitos/patologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Psoríase/patologia , RNA Longo não Codificante/genética , Apoptose , Proliferação de Células , Células Cultivadas , Humanos , Queratinócitos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/genética , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética , Psoríase/genética , Psoríase/metabolismoRESUMO
To enhance the therapeutic effects and reduce the damage to normal tissues in cancer chemotherapy, it is indispensable to develop drug delivery carriers with controllable release and good biocompatibility. In this work, acid-responsive and degradable polyphosphazene (PPZ) nanoparticles were synthesized by the reaction of hexachlorotripolyphosphonitrile (HCCP) with 4-hydroxy-benzoic acid (4-hydroxy-benzylidene)-hydrazide (HBHBH) and anticancer drug doxorubicin (DOX). The controlled release of DOX could be realized based on the acid responsiveness of acylhydrazone in HBHBH. Experimental results showed that polyphosphazene nanoparticles remained stable in the body's normal fluids (pH â¼ 7.4), while they were degraded and controllable release of DOX in an acidic environment such as tumors (pH â¼ 6.8) and lysosome and endosome (â¼5.0) in cancer cells In particular, the doxorubicin (DOX)-loading ratio was fair high and could be tuned from 10.6 to 52.6% by changing the dosing ratio of DOX to HBHBH. Meanwhile, the polyphosphazene nanodrugs showed excellent toxicity to tumor cells and reduced the side effect to normal cells both in vitro and in vivo due to their enhanced permeability and retention (EPR) effect and pH-sensitive degradation properties. Therefore, the constructed pH-sensitive drug delivery system has great potential for cancer chemotherapy.
Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Compostos Organofosforados , PolímerosRESUMO
Tripartite motif 8 (TRIM8) has emerged as a crucial regulator of cell survival, apoptosis, and oxidative stress in various pathological processes. However, TRIM8's involvement in regulating neuronal injury in cerebral ischemia/reperfusion injury remains largely uncharacterized. In the present study, we aimed to investigate the potential function and molecular mechanism of TRIM8 in regulating neuronal apoptosis and oxidative stress induced by oxygen-glucose deprivation/re-oxygenation (OGD/R) in an in vitro model to study cerebral ischemia/reperfusion injury. Herein, we found that TRIM8 expression was upregulated in neurons exposed to OGD/R. Knockdown of TRIM8 improved the viability and decreased the apoptosis and reactive oxygen species (ROS) generation in OGD/R-exposed neurons, whereas TRIM8 overexpression showed the opposite effect. Notably, TRIM8 inhibition increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and enhanced the nuclear expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Moreover, TRIM8 inhibition promoted the transcriptional activity of the Nrf2/antioxidant response element (ARE). However, AMPK inhibition partially reversed TRIM8 downregulation-mediated Nrf2/ARE activation and the neuroprotective effect in OGD/R-exposed neurons. Additionally, silencing of Nrf2 also markedly abrogated TRIM8 downregulation-mediated neuroprotection. Overall, these results demonstrate that downregulation of TRIM8 protects from OGD/R-induced neuronal injury by reinforcing the activation of Nrf2/ARE antioxidant signaling via AMPK, suggesting a potential role for TRIM8 in cerebral ischemia/reperfusion injury.
Assuntos
Glucose/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenilato Quinase/metabolismo , Animais , Apoptose , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , Neuroproteção , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de SinaisRESUMO
Multifunctional nanodrugs with the integration of precise diagnostic and effective therapeutic functions have shown great promise in improving the efficacy of cancer therapy. We report herein a simple and effective approach to directly assemble an anticancer drug (curcumin), a photodynamic agent (Ce6) and tumor environment-sensitive molecules into cross-linked polyphosphazene and coat on superparamagnetic Fe3O4 nanoclusters to form discrete nanoparticles (termed as FHCPCe NPs). FHCPCe NPs have high physiological stability and good biocompatibility, and can enhance accumulation in tumor tissue via the enhanced permeability and retention effect. Meanwhile, the FHCPCe NPs exhibit an effective performance of dual-modality magnetic resonance imaging (MRI) due to the Fe3O4 cores and fluorescence imaging (FL) in the xenografted HeLa tumor because of the fluorescence of Ce6. Importantly, under the conditions of supernormal glutathione levels and acidic microenvironment in tumor tissue, curcumin and Ce6 can be effectively released by the degradation of FHCPCe NPs. Therefore, excellent anti-tumor effects both in vitro and in vivo have been achieved by synergistic chemotherapy/photodynamic therapy (CT/PDT) using multifunctional NPs. Our study highlights the promise of developing multifunctional nanomaterials for accurate multimodal imaging-guided highly sensitive therapy of cancer.
Assuntos
Nanopartículas/química , Compostos Organofosforados/química , Polímeros/química , Animais , Clorofilídeos , Curcumina/química , Curcumina/metabolismo , Curcumina/uso terapêutico , Portadores de Fármacos/química , Óxido Ferroso-Férrico/química , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Oxirredução , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/química , Porfirinas/metabolismo , Porfirinas/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transplante Heterólogo , Imagem Corporal TotalRESUMO
A major pharmacological barrier to peptide therapeutics is their susceptibility to proteolytic degradation and poor membrane permeability, which, in principle, can be overcome by nanoparticle-based delivery technologies. Proteins, by definition, are nano materials and have been clinically proven as an efficient delivery vehicle for small molecule drugs. Here we describe the design of a protein-based peptide drug carrier derived from the tetramerization domain of the chimeric oncogenic protein Bcr/Abl of chronic myeloid leukemia. A dodecameric peptide inhibitor of the p53-MDM2/MDMX interaction, termed PMI, was grafted to the N-terminal helical region of Bcr/Abl tetramer. To antagonize intracellular MDM2/MDMX for p53 activation, we extended this protein, PMIBcr/Abl, by a C-terminal Arg-repeating hexapeptide to facilitate its cellular uptake. The resultant tetrameric protein PMIBcr/Abl-R6 adopted an alpha-helical conformation in solution and bound to MDM2 at an affinity of 32â¯nM. PMIBcr/Abl-R6 effectively induced apoptosis of HCT116 p53+/+ cells in vitro in a p53-dependent manner and potently inhibited tumor growth in a nude mouse xenograft model by stabilizing p53 in vivo. Our protein-based delivery strategy thus provides a clinically viable solution to p53-inspired anticancer therapy and is likely applicable to the development of many other peptide therapeutics to target a great variety of intracellular protein-protein interactions responsible for disease initiation and progression.
Assuntos
Antineoplásicos/uso terapêutico , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Multimerização Proteica , Sequência de Aminoácidos , Animais , Apoptose , Linhagem Celular Tumoral , Permeabilidade da Membrana Celular , Proliferação de Células , Humanos , Cinética , Camundongos Nus , Peptídeos/química , Proteólise , Distribuição Tecidual , Proteína Supressora de Tumor p53/metabolismoRESUMO
Psoriasis is a chronic inflammatory skin disease characterized by abnormal proliferation of epidermal keratinocytes and infiltration of inflammatory cells. CRNN is a major component of the cornified cell envelope and implicated in several epithelial malignancies. Here, we show that CRNN expression was increased in the lesioned epidermis from the patients with psoriasis vulgaris and skin lesions from the imiquimod (IMQ)-treated mice. Expression of CRNN in cultured keratinocytes (HEKa and HaCaT) was also induced by M5, a mixture of five pro-inflammatory cytokines (i.e., IL-17A, IL-22, IL-1α, oncostatin M, and TNF-α). Lentiviral expression of CRNN increased cell proliferation by inducing cyclin D1. Conversely, knockdown of CRNN by small interfering RNA suppressed G1/S transition and attenuated the M5-induced proliferation. In addition, CRNN overexpression increased the phosphorylation and activation of phosphoinositide 3-kinase and Akt. Inactivation of the phosphoinositide 3-kinase and Akt pathways using small interfering RNA or selective inhibitors (LY294002 and MK2206) reduced the proliferative effects of CRNN. Furthermore, topical use of anti-psoriatic calcipotriol effectively decreased expression of CRNN, inhibited the Akt activation and improved the IMQ-stimulated psoriasis-like pathologies. Taken together, these results suggest that induced expression of CRNN may contribute to the pathogenesis of psoriasis.