Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 15(3): e0008352, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760809

RESUMO

Leishmania parasites cycle between sand-fly vectors and mammalian hosts adapting to alternating environments by stage-differentiation accompanied by changes in the proteome profiles. Translation regulation plays a central role in driving the differential program of gene expression since control of gene regulation in Leishmania is mostly post-transcriptional. The Leishmania genome encodes six eIF4E paralogs, some of which bind a dedicated eIF4G candidate, and each eIF4E is assumed to have specific functions with perhaps some overlaps. However, LeishIF4E2 does not bind any known eIF4G ortholog and was previously shown to comigrate with the polysomal fractions of sucrose gradients in contrast to the other initiation factors that usually comigrate with pre-initiation and initiation complexes. Here we deleted one of the two LeishIF4E2 gene copies using the CRISPR-Cas9 methodology. The deletion caused severe alterations in the morphology of the mutant cells that became round, small, and equipped with a very short flagellum that did not protrude from its pocket. Reduced expression of LeishIF4E2 had no global effect on translation and growth, unlike other LeishIF4Es; however, there was a change in the proteome profile of the LeishIF4E2(+/-) cells. Upregulated proteins were related mainly to general metabolic processes including enzymes involved in fatty acid metabolism, DNA repair and replication, signaling, and cellular motor activity. The downregulated proteins included flagellar rod and cytoskeletal proteins, as well as surface antigens involved in virulence. Moreover, the LeishIF4E2(+/-) cells were impaired in their ability to infect cultured macrophages. Overall, LeishIF4E2 does not behave like a general translation factor and its function remains elusive. Our results also suggest that the individual LeishIF4Es perform unique functions.


Assuntos
Adaptação Fisiológica/genética , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Leishmania/genética , Sequência de Aminoácidos/genética , Animais , Antígenos de Superfície/biossíntese , Antígenos de Superfície/genética , Sistemas CRISPR-Cas/genética , Células Cultivadas , Proteínas do Citoesqueleto/biossíntese , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica/genética , Humanos , Macrófagos/parasitologia , Psychodidae/parasitologia , Alinhamento de Sequência
2.
mSphere ; 4(6)2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722993

RESUMO

Leishmania parasites cycle between sand-fly vectors and mammalian hosts, adapting to changing environmental conditions by driving a stage-specific program of gene expression, which is tightly regulated by translation processes. Leishmania encodes six eIF4E orthologs (LeishIF4Es) and five eIF4G candidates, forming different cap-binding complexes with potentially varying functions. Most LeishIF4E paralogs display temperature sensitivity in their cap-binding activity, except for LeishIF4E1, which maintains its cap-binding activity under all conditions. We used the CRISPR-Cas9 system to successfully generate a null mutant of LeishIF4E1 and examine how its elimination affected parasite physiology. Although the LeishIF4E1-/- null mutant was viable, its growth was impaired, in line with a reduction in global translation. As a result of the mutation, the null LeishIF4E1-/- mutant had a defective morphology, as the cells were round and unable to grow a normal flagellum. This was further emphasized when the LeishIF4E1-/- cells failed to develop the promastigote morphology once they shifted from conditions that generate axenic amastigotes (33°C, pH 5.5) back to neutral pH and 25°C, and they maintained their short flagellum and circular structure. Finally, the LeishIF4E1-/- null mutant displayed difficulty in infecting cultured macrophages. The morphological changes and reduced infectivity of the mutant may be related to differences in the proteomic profile of LeishIF4E1-/- cells from that of controls. All defects monitored in the LeishIF4E1-/- null mutant were reversed in the add-back strain, in which expression of LeishIF4E1 was reconstituted, establishing a strong link between the cellular defects and the absence of LeishIF4E1 expression.IMPORTANCELeishmania parasites are the causative agents of a broad spectrum of diseases. The parasites migrate between sand-fly vectors and mammalian hosts, adapting to changing environments by driving a regulated program of gene expression, with translation regulation playing a key role. The leishmanias encode six different paralogs of eIF4E, the cap-binding translation initiation factor. Since these vary in function, expression profile, and assemblage, it is assumed that each is assigned a specific role throughout the life cycle. Using the CRISPR-Cas9 system for Leishmania, we generated a null mutant of LeishIF4E1, eliminating both alleles. Although the mutant cells were viable, their morphology was altered and their ability to synthesize the flagellum was impaired. Elimination of LeishIF4E1 affected their protein expression profile and decreased their ability to infect cultured macrophages. Restoring LeishIF4E1 expression restored the affected features. This study highlights the importance of LeishIF4E1 in diverse cellular events during the life cycle of Leishmania.


Assuntos
Fator de Iniciação 4E em Eucariotos/deficiência , Fator de Iniciação 4E em Eucariotos/metabolismo , Deleção de Genes , Leishmania/crescimento & desenvolvimento , Leishmania/patogenicidade , Proteoma/análise , Animais , Sobrevivência Celular , Técnicas de Inativação de Genes , Concentração de Íons de Hidrogênio , Leishmania/citologia , Leishmania/genética , Macrófagos/parasitologia , Camundongos , Células RAW 264.7 , Temperatura
3.
mSphere ; 4(5)2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31484740

RESUMO

The genomes of Leishmania and trypanosomes encode six paralogs of the eIF4E cap-binding protein, known in other eukaryotes to anchor the translation initiation complex. In line with the heteroxenous nature of these parasites, the different LeishIF4E paralogs vary in their biophysical features and their biological behavior. We therefore hypothesize that each has a specialized function, not limited to protein synthesis. Of the six paralogs, LeishIF4E-3 has a weak cap-binding activity. It participates in the assembly of granules that store inactive transcripts and ribosomal proteins during nutritional stress that is experienced in the sand fly. We investigated the role of LeishIF4E-3 in Leishmania mexicana promastigotes using the CRISPR-Cas9 system. We deleted one of the two LeishIF4E-3 alleles, generating a heterologous deletion mutant with reduced LeishIF4E-3 expression. The mutant showed a decline in de novo protein synthesis and growth kinetics, altered morphology, and impaired infectivity. The mutant cells were rounded and failed to transform into the nectomonad-like form, in response to purine starvation. Furthermore, the infectivity of macrophage cells by the LeishIF4E-3(+/-) mutant was severely reduced. These phenotypic features were not observed in the addback cells, in which expression of LeishIF4E-3 was restored. The observed phenotypic changes correlated with the profile of transcripts associated with LeishIF4E-3. These were enriched for cytoskeleton- and flagellum-encoding genes, along with genes for RNA binding proteins. Our data illustrate the importance of LeishIF4E-3 in translation and in the parasite virulence.IMPORTANCELeishmania species are the causative agents of a spectrum of diseases. Available drug treatment is toxic and expensive, with drug resistance a growing concern. Leishmania parasites migrate between transmitting sand flies and mammalian hosts, experiencing unfavorable extreme conditions. The parasites therefore developed unique mechanisms for promoting a stage-specific program for gene expression, with translation playing a central role. There are six paralogs of the cap-binding protein eIF4E, which vary in their function, expression profiles, and assemblages. Using the CRISPR-Cas9 system for Leishmania, we deleted one of the two LeishIF4E-3 alleles. Expression of LeishIF4E-3 in the deletion mutant was low, leading to reduction in global translation and growth of the mutant cells. Cell morphology also changed, affecting flagellum growth, cell shape, and infectivity. The importance of this study is in highlighting that LeishIF4E-3 is essential for completion of the parasite life cycle. Our study gives new insight into how parasite virulence is determined.


Assuntos
Alelos , Sistemas CRISPR-Cas , Deleção de Genes , Leishmania mexicana/patogenicidade , Proteínas de Protozoários/genética , Animais , Leishmania mexicana/genética , Macrófagos/parasitologia , Camundongos , Mutação , Células RAW 264.7
4.
Front Mol Biosci ; 5: 2, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29497613

RESUMO

Photosynthesis is performed by large complexes, composed of subunits encoded by the nuclear and chloroplast genomes. Assembly is assisted by general and target-specific chaperones, but their mode of action is yet unclear. We formerly showed that ZnJ2 is an algal chaperone resembling BSD2 from land plants. In algae, it co-migrates with the rbcL transcript on chloroplast polysomes, suggesting it contributes to the de-novo synthesis of RbcL (Doron et al., 2014). ZnJ2 contains four CXXCXGXG motifs, comprising a canonical domain typical also of DnaJ-type I (DNAJA). It contributes to the binding of protein substrates to DnaK and promotes an independent oxidoreductase activity (Mattoo et al., 2014). To examine whether ZnJ2 has oxidoreductase activity, we used the RNaseA assay, which measures the oxidation-dependent reactivation of reduced-denatured RNaseA. Although ZnJ2 assisted the native refolding of reduced-denatured RNaseA, its activity was restricted to an oxidizing environment. Thus, ZnJ2 did not carry the exclusive responsibility for the formation of disulfide bridges, but contributed to the stabilization of its target polypeptides, until they reached their native state. A ZnJ2 cysteine deficient mutant maintained a similar holding chaperone activity as the wild-type and did not induce the formation of disulfide bonds. ZnJ2 is devoid of a J-domain. It thus does not belong to the J-domain co-chaperones that target protein substrates to DnaK. As expected, in vitro, its aggregation-prevention activity was not synergic to the ATP-fueled action of DnaK/DnaJ/GrpE in assisting the native refolding of denatured malate dehydrogenase, nor did it show an independent refolding activity. A phylogenetic analysis showed that ZnJ2 and BSD2 from land plants, are two different proteins belonging to a larger group containing a cysteine-rich domain, that also includes the DNAJAs. Members of this family are apparently involved in specific assembly of photosynthetic complexes in the chloroplast.

5.
Plant J ; 82(5): 850-60, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25892083

RESUMO

HSP33 was originally identified in bacteria as a redox-sensitive chaperone that protects unfolded proteins from aggregation. Here, we describe a eukaryote ortholog of HSP33 from the green algae Chlamydomonas reinhardtii, which appears to play a protective role under light-induced oxidizing conditions. The algal HSP33 exhibits chaperone activity, as shown by citrate synthase aggregation assays. Studies from the Jakob laboratory established that activation of the bacterial HSP33 upon its oxidation initiates by the release of pre-bound Zn from the well conserved Zn-binding motif Cys-X-Cys-Xn -Cys-X-X-Cys, and is followed by significant structural changes (Reichmann et al., ). Unlike the bacterial protein, the HSP33 from C. reinhardtii had lost the first cysteine residue of its center, diminishing Zn-binding activity under all conditions. As a result, the algal protein can be easily activated by minor structural changes in response to oxidation and/or excess heat. An attempt to restore the missing first cysteine did not have a major effect on Zn-binding and on the mode of activation. Replacement of all remaining cysteines abolished completely any residual Zn binding, although the chaperone activation was maintained. A phylogenetic analysis of the algal HSP33 showed that it clusters with the cyanobacterial protein, in line with its biochemical localization to the chloroplast. Indeed, expression of the algal HSP33 increases in response to light-induced oxidative stress, which is experienced routinely by photosynthetic organisms. Despite the fact that no ortholog could be found in higher eukaryotes, its abundance in all algal species examined could have a biotechnological relevance.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Evolução Molecular , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Chaperonas Moleculares/metabolismo , Motivos de Aminoácidos , Sítios de Ligação , Cloroplastos/metabolismo , Cisteína/genética , Cisteína/metabolismo , Proteínas de Escherichia coli/química , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/genética , Luz , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Estresse Oxidativo , Fotossíntese , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura , Zinco/metabolismo
6.
Exp Cell Res ; 330(2): 233-239, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25449698

RESUMO

Among the many immunomodulatory and anti-tumor activities, IFN-γ up-regulates tumor cell death mediated by Fas receptor (FasR). Our and several other studies have demonstrated the involvement of trypsin-like proteases (TLPs) in the mode of action of IFN-γ. In the present study, we tried to unravel the role of serine proteases in IFN-γ induced Fas-mediated cell death. Our present results show that both tosyl-l-Lysine chloromethylketone (TLCK), a trypsin like protease inhibitor and tosyl-l-phenylalanine chloromethylketone (TPCK) - a chymotrypsin like protease (CLP) inhibitor, sensitize HeLa cells to Fas-mediated cell death. The combined effect of these protease inhibitors with anti-Fas was stronger than additive. In contrast, elastase inhibitor III (EI), which also contains the chloromethyl ketone moiety, was not active. Furthermore, co-addition of TLCK or TPCK with IFN-γ markedly enhanced Fas-induced cell death. IFN-γ led to up-regulation of FasR on its own, which was further enhanced by the co-addition of TLCK or TPCK. This was evident both by increased expression of Fas receptor on cell surface and by elevated Fas mRNA level. This study may provide the basis for the design of a novel combinatory therapeutic strategy that could enhance the eradication of tumors.


Assuntos
Apoptose/efeitos dos fármacos , Interferon gama/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Serina Proteinase/farmacologia , Receptor fas/biossíntese , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Proteína Ligante Fas/metabolismo , Células HT29 , Células HeLa , Humanos , Neoplasias/patologia , RNA Mensageiro/biossíntese , Serina Endopeptidases/metabolismo , Tosilina Clorometil Cetona/farmacologia , Tosilfenilalanil Clorometil Cetona/farmacologia , Regulação para Cima , Receptor fas/genética
7.
Mol Med ; 20: 417-26, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25105300

RESUMO

Autophagy is involved in both the cell protective and the cell death process but its mechanism is largely unknown. The present work unravels a novel intracellular mechanism by which the serpin α1-antitrypsin (AAT) acts as a novel negative regulator of autophagic cell death. For the first time, the role of intracellularly synthesized AAT, other than in liver cells, is demonstrated. Autophagic cell death was induced by N-α-tosyl-L-phenylalanine chloromethyl ketone (TPCK) and tamoxifen. By utilizing a fluorescently tagged TPCK analog, AAT was "fished out" (pulled out) as a TPCK intracellular protein target. The interaction was further verified by competition binding experiments. Both inducers caused downregulation of AAT expression associated with activation of trypsin-like proteases. Furthermore, silencing AAT by siRNA induced autophagic cell death. Moreover, AAT administration to cultured cells prevented autophagic cell death. This new mechanism could have implications in the treatment of diseases by the regulation of AAT levels in which autophagy has a detrimental function. Furthermore, the results imply that the high synthesis of endogenous AAT by cancer cells could provide a novel resistance mechanism of cancer against autophagic cell death.


Assuntos
Autofagia/fisiologia , alfa 1-Antitripsina/metabolismo , Autofagia/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Células HT29 , Humanos , Células MCF-7 , Inibidores da Síntese de Proteínas/farmacologia , RNA Interferente Pequeno/genética , Tamoxifeno/farmacologia , Tosilfenilalanil Clorometil Cetona/farmacologia , Tripsina/metabolismo , alfa 1-Antitripsina/genética
8.
Plant J ; 80(2): 345-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25124725

RESUMO

The expression of the CO2 -fixation enzyme ribulose-bisphosphate carboxylase/oxygenase (Rubisco), which is affected by light, involves the cysteine-rich protein bundle-sheath defective-2 (BSD2) that was originally identified in maize bundle-sheath cells. We identified the BSD2 ortholog in Chlamydomonas reinhardtii as a small protein (17 kDa) localized to the chloroplast. The algal BSD2-ortholog contains four CXXCXGXG DnaJ-like elements, but lacks the other conserved domains of DnaJ. BSD2 co-migrated with the rbcL transcript on heavy polysomes, and both BSD2 and rbcL mRNA shifted to the lighter fractions under oxidizing conditions that repress the translation of the Rubisco large subunit (RbcL). This profile of co-migration supports the possibility that BSD2 is required for the de novo synthesis of RbcL. Furthermore, BSD2 co-migrated with the rbcL transcript in a C. reinhardtii premature-termination mutant that encodes the first 60 amino acids of RbcL. In both strains, BSD2 shared its migration profile with the rbcL transcript but not with psbA mRNA. The chaperone activity of BSD2 was exemplified by its ability to prevent the aggregation of both citrate synthase (CS) and RbcL in vitro following their chemical denaturation. This activity did not depend on the presence of the thiol groups on BSD2. In contrast, the activity of BSD2 in preventing the precipitation of reduced ß-chains in vitro in the insulin turbidity assay was thiol-dependent. We conclude that BSD2 combines a chaperone 'holdase' function with the ability to interact with free thiols, with both activities being required to protect newly synthesized RbcL chains.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Polirribossomos/metabolismo , RNA Mensageiro/genética , Ribulose-Bifosfato Carboxilase/genética , Sequência de Aminoácidos , Dados de Sequência Molecular , Estresse Oxidativo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Homologia de Sequência de Aminoácidos , Sacarose
9.
RNA Biol ; 9(12): 1450-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23135001

RESUMO

Many eukaryotes encode multiple isoforms of the cap-binding translation initiation factor (eIF4E). Leishmanias and other trypanosomatids encode four paralogs of this protein, but none can complement the eIF4E function in a yeast mutant. A low conservation is observed between the four paralogs, suggesting they assist these organisms survive a multitude of conditions encountered throughout the life cycle. Earlier attempts to decipher their function led to identification of LeishIF4E-4 as the canonical translation initiation factor. LeishIF4E-1 appears to function during thermal stress, via a mechanism not yet understood. LeishIF4E-3 hardly binds cap-4 and is, therefore, less likely to serve as a typical initiation factor. Although it interacts with an eIF4G homolog, LeishIF4G-4, the two polypeptides do not co-migrate on sucrose gradients. While LeishIF4E-3 enters large particles that increase in size during nutritional stress, LeishIF4G-4 is found only in the top fractions. Confocal microscopy localized LeishIF4E-3 (but not LeishIF4G-4) within nutritional stress-induced granules. Accordingly, interaction between the two proteins reduced upon starvation. We therefore propose that under normal conditions, LeishIF4G-4 sequesters LeishIF4E-3 in the cytoplasm. During a nutritional stress, LeishIF4E-3 is modified and released from LeishIF4G-4 to enter stress granules, where inactive mRNAs are stored. Binding of LeishIF4G-4 to LeishIF4E-3 requires a short peptide within the LeishIF4G-4 N-terminus, which bears no similarity to the consensus 4E-binding peptide, YXXXXLΦ. Mutational analysis combined with structure prediction indicates that this interaction is based on an obligatory, conserved α helix in LeishIF4G-4. These features further highlight the uniqueness of LeishIF4E-3 and how it interacts with its binding partners.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Leishmania/metabolismo , RNA de Protozoário/metabolismo , Estresse Fisiológico , Sequência de Aminoácidos , Citoplasma/genética , Citoplasma/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Leishmania/genética , Microscopia Confocal , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Organismos Geneticamente Modificados/genética , Organismos Geneticamente Modificados/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/genética , Técnicas do Sistema de Duplo-Híbrido
10.
RNA ; 16(2): 364-74, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20040590

RESUMO

Heat shock proteins (HSPs) provide a useful system for studying developmental patterns in the digenetic Leishmania parasites, since their expression is induced in the mammalian life form. Translation regulation plays a key role in control of protein coding genes in trypanosomatids, and is directed exclusively by elements in the 3' untranslated region (UTR). Using sequential deletions of the Leishmania Hsp83 3' UTR (888 nucleotides [nt]), we mapped a region of 150 nt that was required, but not sufficient for preferential translation of a reporter gene at mammalian-like temperatures, suggesting that changes in RNA structure could be involved. An advanced bioinformatics package for prediction of RNA folding (UNAfold) marked the regulatory region on a highly probable structural arm that includes a polypyrimidine tract (PPT). Mutagenesis of this PPT abrogated completely preferential translation of the fused reporter gene. Furthermore, temperature elevation caused the regulatory region to melt more extensively than the same region that lacked the PPT. We propose that at elevated temperatures the regulatory element in the 3' UTR is more accessible to mediators that promote its interaction with the basal translation components at the 5' end during mRNA circularization. Translation initiation of Hsp83 at all temperatures appears to proceed via scanning of the 5' UTR, since a hairpin structure abolishes expression of a fused reporter gene.


Assuntos
Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Leishmania/genética , Leishmania/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas , Animais , Animais Geneticamente Modificados , Sequência de Bases , Primers do DNA/genética , Genes Reporter , Leishmania mexicana/genética , Leishmania mexicana/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Protozoário/química , Temperatura
11.
Mol Cell Biol ; 29(22): 6140-8, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19797084

RESUMO

Protein kinase C (PKC) represents a family of serine/threonine kinases that play a central role in the regulation of cell growth, differentiation, and transformation. Posttranslational control of the PKC isoforms and their activation have been extensively studied; however, not much is known about their translational regulation. Here we report that the expression of one of the PKC isoforms, PKCeta, is regulated at the translational level both under normal growth conditions and during stress imposed by amino acid starvation, the latter causing a marked increase in its protein levels. The 5' untranslated region (5' UTR) of PKCeta is unusually long and GC rich, characteristic of many oncogenes and growth regulatory genes. We have identified two conserved upstream open reading frames (uORFs) in its 5' UTR and show their effect in suppressing the expression of PKCeta in MCF-7 growing cells. While the two uORFs function as repressive elements that maintain low basal levels of PKCeta in growing cells, they are required for its enhanced expression upon amino acid starvation. We show that the translational regulation during stress involves leaky scanning and is dependent on eIF-2alpha phosphorylation by GCN2. Our work further suggests that translational regulation could provide an additional level for controlling the expression of PKC family members, being more common than currently recognized.


Assuntos
Fases de Leitura Aberta/genética , Biossíntese de Proteínas , Proteína Quinase C/metabolismo , Regiões 5' não Traduzidas/genética , Aminoácidos/deficiência , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Códon/genética , Sequência Conservada , Indução Enzimática , Humanos , Camundongos , Dados de Sequência Molecular , Polirribossomos/metabolismo , Proteína Quinase C/biossíntese , Proteína Quinase C/genética , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Homologia de Sequência de Aminoácidos
12.
Nucleic Acids Res ; 37(10): 3243-53, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19321500

RESUMO

Translation initiation in eukaryotes is mediated by assembly of the eIF4F complex over the m(7)GTP cap structure at the 5'-end of mRNAs. This requires an interaction between eIF4E and eIF4G, two eIF4F subunits. The Leishmania orthologs of eIF4E are structurally diverged from their higher eukaryote counterparts, since they have evolved to bind the unique trypanosomatid cap-4 structure. Here, we characterize a key eIF4G candidate from Leishmania parasites (LeishIF4G-3) that contains a conserved MIF4G domain. LeishIF4G-3 was found to coelute with the parasite eIF4F subunits from an m(7)GTP-Sepharose column and to bind directly to LeishIF4E. In higher eukaryotes the eIF4E-eIF4G interaction is based on a conserved peptide signature [Y(X(4))Lphi], where X is any amino acid and Phi is a hydrophobic residue. A parallel eIF4E-binding peptide was identified in LeishIF4G-3 (20-YPGFSLDE-27). However, the binding motif varies extensively: in addition to Y20 and L25, binding strictly requires the presence of F23, whereas the hydrophobic amino acid (Phi) is dispensable. The LeishIF4E-LeishIF4G-3 interaction was also confirmed by nuclear magnetic resonance (NMR) studies. In view of these diversities, the characterization of the parasite eIF4E-eIF4G interaction may not only serve as a novel target for inhibiting Leishmaniasis but also provide important insight for future drug discovery.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação 4F em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Leishmania major/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Sítios de Ligação , Evolução Biológica , Centrifugação com Gradiente de Concentração , Cromatografia em Agarose , Fator de Iniciação 4E em Eucariotos/isolamento & purificação , Fator de Iniciação Eucariótico 4G/química , Fator de Iniciação Eucariótico 4G/isolamento & purificação , Peptídeos/química , Peptídeos/metabolismo , Análogos de Capuz de RNA/metabolismo
13.
Plant Physiol ; 141(3): 1089-97, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16731581

RESUMO

We previously proposed a mechanism for control of Rubisco expression and assembly during oxidative stress in Chlamydomonas reinhardtii. The N terminus of the large subunit (LSU) comprises an RNA recognition motif (RRM) that is normally buried in the protein, but becomes exposed under oxidizing conditions when the glutathione pool shifts toward its oxidized form. Thus, de novo translation and assembly of Rubisco LSU stop with similar kinetics and the unpaired small subunit (SSU) is rapidly degraded. Here we show that the structure of the N-terminal domain is highly conserved throughout evolution, despite its relatively low sequence similarity. Furthermore, Rubisco from a broad evolutionary range of photosynthetic organisms binds RNA under oxidizing conditions, with dissociation constant values in the nanomolar range. In line with these observations, oxidative stress indeed causes a translational arrest in land plants as well as in Rhodospirillum rubrum, a purple bacterium that lacks the SSU. We highlight an evolutionary conserved element located within alpha-helix B, which is located in the center of the RRM and is also involved in the intramolecular interactions between two LSU chains. Thus, assembly masks the N terminus of the LSU hiding the RRM. When assembly is interrupted due to structural changes that occur under oxidizing conditions or in the absence of a dedicated chaperone, the N-terminal domain can become exposed, leading to the translational arrest of Rubisco LSU. Taken together, these results support a model by which LSU translation is governed by its dimerization. In the case that regulation of type I and type II Rubisco is conserved, the SSU does not appear to be directly involved in LSU translation.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Nicotiana/metabolismo , Rhodospirillum rubrum/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Spinacia oleracea/metabolismo , Ar , Animais , Evolução Biológica , Sequência Conservada , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo/fisiologia , Biossíntese de Proteínas/fisiologia , Estrutura Terciária de Proteína , RNA/metabolismo
14.
J Biol Chem ; 279(11): 10148-56, 2004 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-14679208

RESUMO

Transfer of the green algae Chlamydomonas reinhardtii from low light to high light generated an oxidative stress that led to a dramatic arrest in the synthesis of the large subunit (LSU) of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). The translational arrest correlated with transient changes in the intracellular levels of reactive oxygen species and with shifting the glutathione pool toward its oxidized form (Irihimovitch, V., and Shapira, M. (2000) J. Biol. Chem. 275, 16289-16295). Here we examined how the redox potential of glutathione affected the RNA-protein interactions with the 5'-untranslated region of rbcL. This RNA region specifically binds a group of proteins with molecular masses of 81, 62, 51, and 47 kDa in UV-cross-linking experiments under reducing conditions. Binding of these proteins was interrupted by exposure to oxidizing conditions (GSSG), and a new protein of 55 kDa was shown to interact with the RNA. The 55-kDa protein comigrated with Rubisco LSU in one- and two-dimensional gels, and its RNA binding activity was further verified by using the purified protein in UV-cross-linking experiments under oxidizing conditions. However, the LSU of purified and oxidized Rubisco bound to RNA in a sequence-independent manner. A remarkable structural similarity was found between the amino-terminal domain of Rubisco LSU in C. reinhardtii and the RNA binding domain, a highly prevailing motif among RNA-binding proteins. It appears from the crystal structure of Rubisco that the amino terminus of LSU is buried within the holoenzyme. We propose that under oxidizing conditions it is exposed to the surface and can, therefore, bind RNA. Accordingly, a recombinant form of the polypeptide domain that corresponds to the amino terminus of LSU was found to bind RNA in vitro with or without GSSG.


Assuntos
Chlamydomonas reinhardtii/enzimologia , RNA/química , Ribulose-Bifosfato Carboxilase/química , Ribulose-Bifosfato Carboxilase/metabolismo , Regiões 5' não Traduzidas , Animais , Sítios de Ligação , Western Blotting , Cloroplastos/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Eletroforese em Gel Bidimensional , Eletroforese em Gel de Poliacrilamida , Glutationa , Dissulfeto de Glutationa/farmacologia , Modelos Moleculares , Oxirredução , Oxigênio/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio , Proteínas Recombinantes/química , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA