Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14732, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926604

RESUMO

Excess amounts of histones in the cell induce mitotic chromosome loss and genomic instability, and are therefore detrimental to cell survival. In yeast, excess histones are degraded by the proteasome mediated via the DNA damage response factor Rad53. Histone expression, therefore, is tightly regulated at the protein level. Our understanding of the transcriptional regulation of histone genes is far from complete. In this study, we found that calcineurin inhibitor treatment increased histone protein levels, and that the transcription factor NFATc1 (nuclear factor of activated T cells 1) repressed histone transcription and acts downstream of the calcineurin. We further revealed that NFATc1 binds to the promoter regions of many histone genes and that histone transcription is downregulated in a manner dependent on intracellular calcium levels. Indeed, overexpression of histone H3 markedly inhibited cell proliferation. Taken together, these findings suggest that NFATc1 prevents the detrimental effects of histone H3 accumulation by inhibiting expression of histone at the transcriptional level.


Assuntos
Calcineurina , Histonas , Fatores de Transcrição NFATC , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Histonas/metabolismo , Calcineurina/metabolismo , Humanos , Proliferação de Células , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Transdução de Sinais , Transcrição Gênica , Cálcio/metabolismo
2.
Front Cell Dev Biol ; 12: 1410177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911025

RESUMO

Mammalian germ cells are derived from primordial germ cells (PGCs) and ensure species continuity through generations. Unlike irreversible committed mature germ cells, migratory PGCs exhibit a latent pluripotency characterized by the ability to derive embryonic germ cells (EGCs) and form teratoma. Here, we show that inhibition of p38 mitogen-activated protein kinase (MAPK) by chemical compounds in mouse migratory PGCs enables derivation of chemically induced Embryonic Germ-like Cells (cEGLCs) that do not require conventional growth factors like LIF and FGF2/Activin-A, and possess unique naïve pluripotent-like characteristics with epiblast features and chimera formation potential. Furthermore, cEGLCs are regulated by a unique PI3K-Akt signaling pathway, distinct from conventional naïve pluripotent stem cells described previously. Consistent with this notion, we show by performing ex vivo analysis that inhibition of p38 MAPK in organ culture supports the survival and proliferation of PGCs and also potentially reprograms PGCs to acquire indefinite proliferative capabilities, marking these cells as putative teratoma-producing cells. These findings highlight the utility of our ex vivo model in mimicking in vivo teratoma formation, thereby providing valuable insights into the cellular mechanisms underlying tumorigenesis. Taken together, our research underscores a key role of p38 MAPK in germ cell development, maintaining proper cell fate by preventing unscheduled pluripotency and teratoma formation with a balance between proliferation and differentiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA