Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; 36(3): e4855, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36269130

RESUMO

Changes in glioblastoma (GBM) metabolism was investigated in response to JAS239, a choline kinase inhibitor, using MRS. In addition to the inhibition of phosphocholine synthesis, we investigated changes in other key metabolic pathways associated with GBM progression and treatment response. Three syngeneic rodent models of GBM were used: F98 (N = 12) and 9L (N = 8) models in rats and GL261 (N = 10) in mice. Rodents were intracranially injected with GBM cells in the right cortex and tumor growth was monitored using T2 -weighted images. Animals were treated once daily with intraperitoneal injections of 4 mg/kg JAS239 (F98 rats, n = 6; 9L rats, n = 6; GL261 mice, n = 5) or saline (control group, F98 rats, n = 6; 9L rats, n = 2; GL261 mice, n = 5) for five consecutive days. Single voxel spectra were acquired on Days 0 (T0, baseline) and 6 (T6, end of treatment) from the tumor as well as the contralateral normal brain using a PRESS sequence. Changes in metabolite ratios (tCho/tCr, tCho/NAA, mI/tCr, Glx/tCr and (Lip + Lac)/Cr) were used to assess metabolic pathway alterations in response to JAS239. Tumor growth arrest was noted in all models in response to JAS239 treatment compared with saline-treated animals, with a significant reduction (p < 0.05) in the F98 model. A reduction in tCho/tCr was observed with JAS239 treatment in all GBM models, indicating reduced phospholipid metabolism, with the highest reduction in 9L followed by GL261 and F98 tumors. A significant reduction (p < 0.05) in the tCho/NAA ratio was observed in the 9L model. A significant reduction in mI/tCr (p < 0.05) was found in JAS239-treated F98 tumors compared with the saline-treated animals. A non-significant trend of reduction in Glx/tCr was observed only in F98 and 9L tumors. JAS239-treated F98 tumors also showed a significant increase in Lip + Lac (p < 0.05), indicating increased cell death. This study demonstrated the utility of MRS in assessing metabolic changes in GBM in response to choline kinase inhibition.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Ratos , Camundongos , Animais , Glioblastoma/diagnóstico por imagem , Glioblastoma/tratamento farmacológico , Roedores/metabolismo , Colina Quinase , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Receptores de Antígenos de Linfócitos T , Colina/metabolismo
2.
PLoS One ; 17(3): e0259608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35333865

RESUMO

Propagation of small amyloid beta (Aß) aggregates (or seeds) has been suggested as a potential mechanism of Alzheimer's disease progression. Monitoring the propagation of Aß seeds in an organism would enable testing of this hypothesis and, if confirmed, provide mechanistic insights. This requires a contrast agent for long-term tracking of the seeds. Gold nanorods combine several attractive features for this challenging task, in particular, their strong absorbance in the infrared (enabling optoacoustic imaging) and the availability of several established protocols for surface functionalisation. In this work, polymer-coated gold nanorods were conjugated with anti-Aß antibodies and attached to pre-formed Aß seeds. The resulting complexes were characterised for their optical properties by UV/Vis spectroscopy and multispectral optoacoustic tomography. The complexes retained their biophysical properties, i.e. their ability to seed Aß fibril formation. They remained stable in biological media for at least 2 days and showed no toxicity to SH-SY5Y neuroblastoma cells up to 1.5 nM and 6 µM of gold nanorods and Aß seeds, respectively. Taken together, this study describes the first steps in the development of probes for monitoring the spread of Aß seeds in animal models.


Assuntos
Doença de Alzheimer , Nanotubos , Doença de Alzheimer/diagnóstico por imagem , Amiloide , Peptídeos beta-Amiloides , Animais , Ouro
3.
Cancers (Basel) ; 14(5)2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35267531

RESUMO

To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals. No significant differences in these parameters were found for the GL261 tumour, indicating that this model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing therapeutic response.

4.
Hepatology ; 74(2): 973-986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33872408

RESUMO

BACKGROUND AND AIMS: The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) regulates an array of cytoprotective genes, yet studies in transgenic mice have led to conflicting reports on its role in liver regeneration. We aimed to test the hypothesis that pharmacological activation of Nrf2 would enhance liver regeneration. APPROACH AND RESULTS: Wild-type and Nrf2 null mice were administered bardoxolone methyl (CDDO-Me), a potent activator of Nrf2 that has entered clinical development, and then subjected to two-thirds partial hepatectomy. Using translational noninvasive imaging techniques, CDDO-Me was shown to enhance the rate of restoration of liver volume (MRI) and improve liver function (multispectral optoacoustic imaging of indocyanine green clearance) in wild-type, but not Nrf2 null, mice following partial hepatectomy. Using immunofluorescence imaging and whole transcriptome analysis, these effects were found to be associated with an increase in hepatocyte hypertrophy and proliferation, the suppression of immune and inflammatory signals, and metabolic adaptation in the remnant liver tissue. Similar processes were modulated following exposure of primary human hepatocytes to CDDO-Me, highlighting the potential relevance of our findings to patients. CONCLUSIONS: Our results indicate that pharmacological activation of Nrf2 is a promising strategy for enhancing functional liver regeneration. Such an approach could therefore aid the recovery of patients undergoing liver surgery and support the treatment of acute and chronic liver disease.


Assuntos
Regeneração Hepática/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Ácido Oleanólico/análogos & derivados , Adulto , Idoso de 80 Anos ou mais , Animais , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatectomia , Hepatócitos , Humanos , Fígado/fisiologia , Fígado/cirurgia , Regeneração Hepática/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Ácido Oleanólico/administração & dosagem , Cultura Primária de Células
5.
ACS Appl Mater Interfaces ; 12(25): 27930-27939, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32463217

RESUMO

Noninvasive bioimaging techniques are critical for assessing the biodistribution of cellular therapies longitudinally. Among them, photoacoustic imaging (PAI) can generate high-resolution images with a tissue penetration depth of ∼4 cm. However, it is essential and still highly challenging to develop stable and efficient near-infrared (NIR) probes with low toxicity for PAI. We report here the preparation and use of perylene diimide derivative (PDI) with NIR absorbance (around 700 nm) as nanoprobes for tracking mesenchymal stromal cells (MSCs) in mice. Employing an in-house synthesized star hyperbranched polymer as a stabilizer is the key to the formation of stable PDI nanoparticles with low toxicity and high uptake by the MSCs. The PDI nanoparticles remain within the MSCs as demonstrated by in vitro and in vivo assessments. The PDI-labeled MSCs injected subcutaneously on the flanks of the mice are clearly visualized with PAI up to 11 days postadministration. Furthermore, bioluminescence imaging of PDI-labeled luciferase-expressing MSCs confirms that the administered cells remain viable for the duration of the experiment. These PDI nanoprobes thus have good potential for tracking administered cells in vivo using PAI.


Assuntos
Diagnóstico por Imagem/métodos , Imidas/química , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Perileno/análogos & derivados , Técnicas Fotoacústicas/métodos , Polímeros/química , Animais , Camundongos , Perileno/química
6.
Mol Imaging Biol ; 22(4): 904-913, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31823201

RESUMO

PURPOSE: The question of whether mesenchymal stromal cells (MSCs) home to injured kidneys remains a contested issue. To try and understand the basis for contradictory findings reported in the literature, our purpose here was to investigate whether MSC homing capacity is influenced by administration route, the type of injury model used, and/or the presence of exogenous macrophages. PROCEDURES: To assess the viability, whole-body biodistribution, and intra-renal biodistribution of MSCs, we used a multimodal imaging strategy comprising bioluminescence and magnetic resonance imaging. The effect of administration route (venous or arterial) on the ability of MSCs to home to injured renal tissue, and persist there, was assessed in a glomerular injury model (induced by the nephrotoxicant, Adriamycin) and a tubular injury model induced by ischaemia-reperfusion injury (IRI). Exogenous macrophages were used as a positive control because these cells are known to home to injured mouse kidneys. To assess whether the homing capacity of MSCs can be influenced by the presence of exogenous macrophages, we used a dual-bioluminescence strategy that allowed the whole-body biodistribution of the two cell types to be monitored simultaneously in individual animals. RESULTS: Following intravenous administration, no MSCs were detected in the kidneys, irrespective of whether the mice had been subjected to renal injury. After arterial administration via the left cardiac ventricle, MSCs transiently populated the kidneys, but no preferential homing or persistence was observed in injured renal tissue after unilateral IRI. An exception was when MSCs were co-administered with exogenous macrophages; here, we observed some homing of MSCs to the injured kidney. CONCLUSIONS: Our findings strongly suggest that MSCs do not home to injured kidneys.


Assuntos
Rim/diagnóstico por imagem , Rim/lesões , Macrófagos/patologia , Células-Tronco Mesenquimais/patologia , Imagem Multimodal , Animais , Sobrevivência Celular , Rastreamento de Células , Modelos Animais de Doenças , Feminino , Fígado/diagnóstico por imagem , Medições Luminescentes , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Células RAW 264.7 , Traumatismo por Reperfusão/diagnóstico por imagem , Traumatismo por Reperfusão/patologia
7.
Nanoscale Adv ; 1(1): 367-377, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36132463

RESUMO

Nanoparticle contrast agents are useful tools to label stem cells and monitor the in vivo bio-distribution of labeled cells in pre-clinical models of disease. In this context, understanding the in vivo fate of the particles after injection of labelled cells is important for their eventual clinical use as well as for the interpretation of imaging results. We examined how the formulation of superparamagnetic iron oxide nanoparticles (SPIONs) impacts the labelling efficiency, magnetic characteristics and fate of the particles by comparing individual SPIONs with polyelectrolyte multilayer capsules containing SPIONs. At low labelling concentration, encapsulated SPIONs served as an efficient labelling agent for stem cells. The bio-distribution after intra-cardiac injection of labelled cells was monitored longitudinally by MRI and as an endpoint by inductively coupled plasma-optical emission spectrometry. The results suggest that, after being released from labelled cells after cell death, both formulations of particles are initially stored in liver and spleen and are not completely cleared from these organs 2 weeks post-injection.

8.
Stem Cell Res Ther ; 9(1): 332, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30486897

RESUMO

BACKGROUND: Cell-based regenerative medicine therapies are now frequently tested in clinical trials. In many conditions, cell therapies are administered systemically, but there is little understanding of their fate, and adverse events are often under-reported. Currently, it is only possible to assess safety and fate of cell therapies in preclinical studies, specifically by monitoring animals longitudinally using multi-modal imaging approaches. Here, using a suite of in vivo imaging modalities to explore the fate of a range of human and murine cells, we investigate how route of administration, cell type and host immune status affect the fate of administered cells. METHODS: We applied a unique imaging platform combining bioluminescence, optoacoustic and magnetic resonance imaging modalities to assess the safety of different human and murine cell types by following their biodistribution and persistence in mice following administration into the venous or arterial system. RESULTS: Longitudinal imaging analyses (i) suggested that the intra-arterial route may be more hazardous than intravenous administration for certain cell types, (ii) revealed that the potential of a mouse mesenchymal stem/stromal cell (MSC) line to form tumours depended on administration route and mouse strain and (iii) indicated that clinically tested human umbilical cord (hUC)-derived MSCs can transiently and unexpectedly proliferate when administered intravenously to mice. CONCLUSIONS: In order to perform an adequate safety assessment of potential cell-based therapies, a thorough understanding of cell biodistribution and fate post administration is required. The non-invasive imaging platform used here can expose not only the general organ distribution of these therapies, but also a detailed view of their presence within different organs and, importantly, tumourigenic potential. Our observation that the hUC-MSCs but not the human bone marrow (hBM)-derived MSCs persisted for a period in some animals suggests that therapies with these cells should proceed with caution.


Assuntos
Imageamento Tridimensional , Transplante de Células-Tronco Mesenquimais , Animais , Carcinogênese/patologia , Linhagem Celular , Humanos , Injeções Intravenosas , Imageamento por Ressonância Magnética , Células-Tronco Mesenquimais/citologia , Camundongos Endogâmicos BALB C , Camundongos SCID , Osteossarcoma/patologia , Distribuição Tecidual , Cordão Umbilical/citologia
9.
Elife ; 72018 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-29949503

RESUMO

Understanding the fate of exogenous cells after implantation is important for clinical applications. Preclinical studies allow imaging of cell location and survival. Labelling with nanoparticles enables high sensitivity detection, but cell division and cell death cause signal dilution and false positives. By contrast, genetic reporter signals are amplified by cell division. Here, we characterise lentivirus-based bi-cistronic reporter gene vectors and silica-coated gold nanorods (GNRs) as synergistic tools for cell labelling and tracking. Co-expression of the bioluminescence reporter luciferase and the optoacoustic reporter near-infrared fluorescent protein iRFP720 enabled cell tracking over time in mice. Multispectral optoacoustic tomography (MSOT) showed immediate biodistribution of GNR-labelled cells after intracardiac injection and successive clearance of GNRs (day 1-15) with high resolution, while optoacoustic iRFP720 detection indicated tumour growth (day 10-40). This multimodal cell tracking approach could be applied widely for cancer and regenerative medicine research to monitor short- and long-term biodistribution, tumour formation and metastasis.


Assuntos
Rastreamento de Células/métodos , Nanopartículas/administração & dosagem , Nanotubos/química , Neoplasias/patologia , Animais , Genes Reporter/genética , Ouro/química , Humanos , Lentivirus/genética , Camundongos , Nanopartículas/química , Neoplasias/diagnóstico , Medicina Regenerativa/tendências
10.
Contrast Media Mol Imaging ; 2018: 2514796, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30627058

RESUMO

The ability to track the biodistribution and fate of multiple cell populations administered to rodents has the potential to facilitate the understanding of biological processes in a range of fields including regenerative medicine, oncology, and host/pathogen interactions. Bioluminescence imaging is an important tool for achieving this goal, but current protocols rely on systems that have poor sensitivity or require spectral decomposition. Here, we show that a bioluminescence resonance energy transfer reporter (BRET) based on NanoLuc and LSSmOrange in combination with firefly luciferase enables the unambiguous discrimination of two cell populations in vivo with high sensitivity. We insert each of these reporter genes into cells using lentiviral vectors and demonstrate the ability to monitor the cells' biodistribution under a wide range of administration conditions, including the venous or arterial route, and in different tissues including the brain, liver, kidneys, and tumours. Our protocol allows for the imaging of two cell populations in the same imaging session, facilitating the overlay of the signals and the identification of anatomical positions where they colocalise. Finally, we provide a method for postmortem confirmation of the presence of each cell population in excised organs.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Medições Luminescentes/métodos , Imagem Óptica/métodos , Animais , Linhagem Celular , Genes Reporter , Vetores Genéticos , Luciferases de Vaga-Lume , Camundongos , Camundongos Endogâmicos BALB C , Células RAW 264.7 , Distribuição Tecidual
11.
Int J Mol Sci ; 19(1)2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29271879

RESUMO

Far-red fluorescent reporter genes can be used for tracking cells non-invasively in vivo using fluorescence imaging. Here, we investigate the effectiveness of the far-red fluorescent protein, E2-Crimson (E2C), for tracking mouse embryonic cells (mESCs) in vivo following subcutaneous administration into mice. Using a knock-in strategy, we introduced E2C into the Rosa26 locus of an E14-Bra-GFP mESC line, and after confirming that the E2C had no obvious effect on the phenotype of the mESCs, we injected them into mice and imaged them over nine days. The results showed that fluorescence intensity was weak, and cells could only be detected when injected at high densities. Furthermore, intensity peaked on day 4 and then started to decrease, despite the fact that tumour volume continued to increase beyond day 4. Histopathological analysis showed that although E2C fluorescence could barely be detected in vivo at day 9, analysis of frozen sections indicated that all mESCs within the tumours continued to express E2C. We hypothesise that the decrease in fluorescence intensity in vivo was probably due to the fact that the mESC tumours became more vascular with time, thus leading to increased absorbance of E2C fluorescence by haemoglobin. We conclude that the E2C reporter has limited use for tracking cells in vivo, at least when introduced as a single copy into the Rosa26 locus.


Assuntos
Rastreamento de Células/métodos , Corantes Fluorescentes/análise , Proteínas Luminescentes/análise , Células-Tronco Embrionárias Murinas/citologia , Imagem Óptica/métodos , Animais , Feminino , Corantes Fluorescentes/metabolismo , Técnicas de Introdução de Genes , Proteínas Luminescentes/genética , Camundongos , Camundongos SCID , Neoplasias/diagnóstico , Transgenes , Proteína Vermelha Fluorescente
12.
Toxicol Appl Pharmacol ; 332: 64-74, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28755860

RESUMO

The prediction and understanding of acetaminophen (APAP)-induced liver injury (APAP-ILI) and the response to therapeutic interventions is complex. This is due in part to sensitivity and specificity limitations of currently used assessment techniques. Here we sought to determine the utility of integrating translational non-invasive photoacoustic imaging of liver function with mechanistic circulating biomarkers of hepatotoxicity with histological assessment to facilitate the more accurate and precise characterization of APAP-ILI and the efficacy of therapeutic intervention. Perturbation of liver function and cellular viability was assessed in C57BL/6J male mice by Indocyanine green (ICG) clearance (Multispectral Optoacoustic Tomography (MSOT)) and by measurement of mechanistic (miR-122, HMGB1) and established (ALT, bilirubin) circulating biomarkers in response to the acetaminophen and its treatment with acetylcysteine (NAC) in vivo. We utilised a 60% partial hepatectomy model as a situation of defined hepatic functional mass loss to compared acetaminophen-induced changes to. Integration of these mechanistic markers correlated with histological features of APAP hepatotoxicity in a time-dependent manner. They accurately reflected the onset and recovery from hepatotoxicity compared to traditional biomarkers and also reported the efficacy of NAC with high sensitivity. ICG clearance kinetics correlated with histological scores for acute liver damage for APAP (i.e. 3h timepoint; r=0.90, P<0.0001) and elevations in both of the mechanistic biomarkers, miR-122 (e.g. 6h timepoint; r=0.70, P=0.005) and HMGB1 (e.g. 6h timepoint; r=0.56, P=0.04). For the first time we report the utility of this non-invasive longitudinal imaging approach to provide direct visualisation of the liver function coupled with mechanistic biomarkers, in the same animal, allowing the investigation of the toxicological and pharmacological aspects of APAP-ILI and hepatic regeneration.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/diagnóstico por imagem , Fígado/efeitos dos fármacos , Técnicas Fotoacústicas , Acetilcisteína/administração & dosagem , Alanina Transaminase/sangue , Animais , Bilirrubina/sangue , Biomarcadores/sangue , Sobrevivência Celular/efeitos dos fármacos , Glutationa/sangue , Proteína HMGB1/sangue , Fígado/diagnóstico por imagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/sangue
13.
Cytotherapy ; 19(4): 555-569, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28214127

RESUMO

BACKGROUND AIMS: Tracking cells during regenerative cytotherapy is crucial for monitoring their safety and efficacy. Macrophages are an emerging cell-based regenerative therapy for liver disease and can be readily labeled for medical imaging. A reliable, clinically applicable cell-tracking agent would be a powerful tool to study cell biodistribution. METHODS: Using a recently described chemical design, we set out to functionalize, optimize and characterize a new set of superparamagnetic iron oxide nanoparticles (SPIONs) to efficiently label macrophages for magnetic resonance imaging-based cell tracking in vivo. RESULTS: A series of cell health and iron uptake assays determined that positively charged SPIONs (+16.8 mV) could safely label macrophages more efficiently than the formerly approved ferumoxide (-6.7 mV; Endorem) and at least 10 times more efficiently than the clinically approved SPION ferumoxytol (-24.2 mV; Rienso). An optimal labeling time of 4 h at 25 µg/mL was demonstrated to label macrophages of mouse and human origin without any adverse effects on cell viability whilst providing substantial iron uptake (>5 pg Fe/cell) that was retained for 7 days in vitro. SPION labeling caused no significant reduction in phagocytic activity and a shift toward a reversible M1-like phenotype in bone marrow-derived macrophages (BMDMs). Finally, we show that SPION-labeled BMDMs delivered via the hepatic portal vein to mice are localized in the hepatic parenchyma resulting in a 50% drop in T2* in the liver. Engraftment of exogenous cells was confirmed via immunohistochemistry up to 3 weeks posttransplantation. DISCUSSION: A positively charged dextran-coated SPION is a promising tool to noninvasively track hepatic macrophage localization for therapeutic monitoring.


Assuntos
Rastreamento de Células/métodos , Dextranos/química , Ferro/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Imageamento por Ressonância Magnética/métodos , Nanopartículas de Magnetita/química , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Transplante de Medula Óssea/métodos , Sobrevivência Celular , Células Cultivadas , Dextranos/farmacocinética , Óxido Ferroso-Férrico/química , Óxido Ferroso-Férrico/farmacocinética , Humanos , Cirrose Hepática/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Tecidual
14.
Eur J Pharmacol ; 790: 74-82, 2016 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-27375077

RESUMO

The incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/efeitos adversos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Nefropatias/patologia , Nefropatias/terapia , Imagem Molecular/métodos , Medicina Regenerativa/métodos , Segurança , Animais , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Rim/fisiopatologia , Nefropatias/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA