Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cell Signal ; 5(2): 51-56, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726221

RESUMO

In the quest for improving the clinical outcome of patients with metastatic genitourinary cancers, including metastatic renal cell carcinoma (mRCC), the emphasis often is on finding new targeted therapies. However, two studies by Jordan et al. (Oncogenesis 2020) and Wang et al. (Cancer Cell Int 2022) demonstrate the feasibility of improving the efficacy of a modestly effective drug Sorafenib against mRCC by attacking a mechanism hijacked by RCC cells for inactivating Sorafenib. The studies also identified hyaluronic acid synthase -3 (HAS3) as a bonafide target of Sorafenib in RCC cells. The studies demonstrate that an over-the-counter drug Hymecromone (4-methylumbelliferone) blocks inactivation of Sorafenib in RCC cells and improves its efficacy against mRCC through the inhibition of HAS3 expression and HA signaling. In the broader context, improving the efficacy of "old and failed drugs" that have favorable safety profiles should increase the availability of effective treatments for patients with advanced cancers.

2.
Chem Commun (Camb) ; 60(12): 1579-1582, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38224119

RESUMO

A new Ru(II) arene chlorido organometallic complex [(η6-p-cymene)(L)RuCl]PF6 (named as pCYRuL) using 2-bis(quinolin-2-ylmethylene) hydrazine (L) was developed that exhibits potent anticancer activity against castration-resistant prostate cancer (CRPC) (IC50 = 0.71 µM), and it is 45 times more effective than the standard drug cisplatin (IC50 = 31.3 µM) in a castration-resistant human prostatic adenocarcinoma cell line (PC-3) but non-toxic in normal human kidney cells (HK2) as well as normal breast cells (MCF10A) and found that pCYRuL exerted anticancer activity via apoptosis induction and cell cycle arrest in the G2/M phase of PC-3 cells.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias de Próstata Resistentes à Castração , Quinolinas , Rutênio , Masculino , Humanos , Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Rutênio/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Proliferação de Células , Quinolinas/farmacologia , Linhagem Celular Tumoral
3.
Chem Asian J ; 17(21): e202200736, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36065146

RESUMO

This report describes the synthesis of two ruthenium(II) ENE pincer complexes (E = S, C1 and E = Se, C2) by the reaction of bis(2-(phenylchalcogenyl)ethyl)amine (L1, L2) with RuCl2 (PPh3 )3 . The complexes were characterized with the help of 1 H and 13 C{1 H} NMR, FTIR, HRMS, cyclic voltammetry and elemental analysis techniques. The structure and bonding mode of ligand with ruthenium in C2 was established with the help of single crystal X-ray diffraction. The complex showed distorted octahedral geometry with two chlorine atoms trans to each other. The Ru-Se bond distances (Å) are 2.4564(3)-2.4630(3), Ru-N distance is 2.181(2), Ru-P distance is 2.2999(6), and Ru-Cl distances are 2.4078(6)-2.4314(6). The complexes showed good to excellent catalytic activity for the N-alkylation of o-phenylenediamine with benzyl alcohol derivatives to synthesize 1,2-disubstituted benzimidazole derivatives. The complexes were also found to be efficient for aerobic oxidation of benzyl alcohols to corresponding aldehydes which are precursors to the bisimines generated in situ during the synthesis of 1,2-disubstituted benzimidazole derivatives. Complex C2 where selenium is coordinated with ruthenium was found to be more efficient as compared to sulfur coordinated ruthenium complex C1. Since ruthenium complexes are getting increasing attention for developing new anticancer agents, the preliminary studies like binding behavior of both the complexes towards CT-DNA were studied by competitive binding with ethidium bromide (EthBr) using emission spectroscopy. In addition, the interactions of C1-C2 were also studied with bovine serum albumin (BSA) using steady state fluorescence quenching and synchronous fluorescence studies. A good stability of Ru(II) state was observed by cyclic voltammetric studies of C1-C2. Overall these molecules are good examples of bio-organometallic systems for catalytic and biological applications.


Assuntos
Rutênio , Rutênio/química , Cristalografia por Raios X , DNA/química , Catálise , Benzimidazóis/química
4.
Dalton Trans ; 51(24): 9302-9313, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35670314

RESUMO

We present herein a family of molecular cis-[FeII(X-PPMA)2(NCS)2]·H2O [4-X-N-(phenyl(pyridin-2-yl)methylene)aniline; X-PPMA; X = -Cl (1), -Br (2), and -CH3 (3)] complexes that exhibit spin crossover behaviour above room temperature. Judiciously designed bidentate N-donor Schiff bases of 2-benzoylpyridine and para-substituted anilines in combination with Fe(NCS)2 were used for the synthesis of complexes 1-3. The relatively strong ligand field of the Schiff bases stabilises the low spin state of iron(II) up to 300 K which is evident from magnetic measurements, room temperature Mössbauer spectra and crystallographic bond/angle distortion parameters. Interestingly, complexes 1-3 crystallize in a tetragonal system with either a P43212 or P41212 chiral space group from achiral building units due to the supramolecular helical arrangements of molecules through intermolecular (pyridine)C-H⋯C(NCS) interactions in the crystalline state. Complexes 1 and 2 exhibit complete, gradual and slightly irreversible spin crossover behaviour in the temperature range of 300-500 K with equilibrium temperatures (T1/2) 375 K (1) and 380 K (2). The spin state evolution of iron(II) in complexes 1 and 2 is monitored between 150 K and 450 K through variable temperature crystallographic studies in the warming mode. The structural data are in good agreement with the 94% (1) and 87% (2) high spin conversion of iron(II) at 450 K. At a high temperature (450 K), some minor irreversible ligand motion is noticed in complexes 1 and 2, in addition to a complete solvent loss that may induce the slight irreversibility of the spin crossover. On the other hand, complex 3 shows a complete and gradual spin crossover in the temperature range of 10-475 K with strong irreversible features. The equilibrium temperatures obtained upon first warming (T1/2↑) and second cooling (T1/2↓) are 375 K and 200 K, respectively. In complex 3, the loss of a water molecule triggers strong deviations in the spin crossover behaviour. Moreover, dehydrated complex 3 exhibits photoswitching LIESST effect with a relaxation temperature T(LIESST) = 60 K.

5.
Opt Quantum Electron ; 54(6): 328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35578635

RESUMO

Graphene monolayer of sub-nanometer thickness possesses strong metallic and plasmonic behavior in a broad terahertz (THz) frequency range. This plasmonic effect can be considerably manipulated when graphene layer is subjected to a variable chemical potential (Ef) via chemical doping or electrical gating. The strong adsorption characteristics of graphene layer is another important advantage. In this work, a photonic spin Hall effect (PSHE) based plasmonic sensor consisting of germanium prism, organic dielectric layer, and graphene monolayer is simulated and analyzed in THz range aiming at highly sensitive and reliable gas sensing. Modified Otto configuration and Kubo formulation for graphene at room temperature are considered. The sensor's performance is examined in terms of figure of merit (FOM). The analysis indicates that under angular interrogation scheme of sensor operation, the FOM improves for smaller chemical potential (moderate doping) and higher THz frequency. Moreover, the influence of temperature on gas sensor's performance (FOM) is negligible, which suggests that the sensor is capable of providing stable sensing performance against temperature variation. The sensor design is highly flexible in terms of selection of THz frequency as an alternative interrogation scheme (i.e., measuring the variation in spin-dependent shift peak value of PSHE spectrum upon change in gas medium refractive index) can also be implemented. It is found that there is no need to change the moderate doping of graphene monolayer (i.e., Ef remains around its normal value ~ 0.1 eV) as the sensitivity achievable with this alternative method has considerably greater magnitude at smaller THz frequency (e.g., 2 THz). The magnitudes of FOM (with angular interrogation method) and sensitivity (with alternative method) are found to be significantly greater for rarer gaseous media, which might possibly assist in early detection of airborne viruses such as SARS-Cov-2 (while using appropriate specificity method) and to measure the concentration of a particular gas in a given gaseous mixture. Supplementary Information: The online version contains supplementary material available at 10.1007/s11082-022-03626-7.

6.
J Bone Miner Res ; 37(2): 285-302, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34747055

RESUMO

Hallmarks of aging-associated osteoporosis include bone loss, bone marrow adipose tissue (BMAT) expansion, and impaired osteoblast function. Endogenous glucocorticoid levels increase with age, and elevated glucocorticoid signaling, associated with chronic stress and dysregulated metabolism, can have a deleterious effect on bone mass. Canonical glucocorticoid signaling through the glucocorticoid receptor (GR) was recently investigated as a mediator of osteoporosis during the stress of chronic caloric restriction. To address the role of the GR in an aging-associated osteoporotic phenotype, the current study utilized female GR conditional knockout (GR-CKO; GRfl/fl :Osx-Cre+) mice and control littermates on the C57BL/6 background aged to 21 months and studied in comparison to young (3- and 6-month-old) mice. GR deficiency in Osx-expressing cells led to low bone mass and BMAT accumulation that persisted with aging. Surprisingly, however, GR-CKO mice also exhibited alterations in muscle mass (reduced % lean mass and soleus fiber size), accompanied by reduced voluntary physical activity, and also exhibited higher whole-body metabolic rate and elevated blood pressure. Moreover, increased lipid storage was observed in GR-CKO osteoblastic cultures in a glucocorticoid-dependent fashion despite genetic deletion of the GR, and could be reversed via pharmacological inhibition of the mineralocorticoid receptor (MR). These findings provide evidence of a role for the GR (and possibly the MR) in facilitating healthy bone maintenance with aging in females. The effects of GR-deficient bone on whole-body physiology also demonstrate the importance of bone as an endocrine organ and suggest evidence for compensatory mechanisms that facilitate glucocorticoid signaling in the absence of osteoblastic GR function; these represent new avenues of research that may improve understanding of glucocorticoid signaling in bone toward the development of novel osteogenic agents. © 2021 American Society for Bone and Mineral Research (ASBMR).


Assuntos
Medula Óssea , Receptores de Glucocorticoides , Tecido Adiposo/metabolismo , Envelhecimento , Animais , Medula Óssea/metabolismo , Feminino , Glucocorticoides/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Receptores de Glucocorticoides/metabolismo
7.
J Inorg Biochem ; 210: 111174, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32652261

RESUMO

Research on development of novel metal based anti-cancer agents continues with its popularity among bioinorganic community. Benzothiazole, an important heterocyclic pharmacophore, was chosen as a valuable and useful scaffold for the synthesis of novel copper(II) complexes. Three new copper(II) complexes obtained from the synthesis of newly synthesized benzothiazole based N-(benzo[d]thiazol-2-ylmethyl)-N-methyl-2-(pyridin-2-yl)ethan-1-amine (btzpy) ligand with CuCl2 [Cu(btzpy)Cl2] (1), Cu(NCS)2 [Cu(btzpy)(NCS)2] (2), and Cu(NO3)2 [Cu(btzpy)(NO3)(H2O)]NO3 (3) were isolated and characterized by physical and spectroscopic measurements, including single-crystal X-ray structures. The interaction of complexes 1 and 3 with calf thymus (CT)-DNA was investigated using ethidium bromide fluorescence quenching assay and weak intercalation with KSV values of 9.8 × 102 M-1 and 8.2 × 102 M-1, respectively was observed. All three complexes have shown DNA cleavage of supercoiled plasmid DNA forming single nicked and double nicked forms in the presence of external reducing agents like 3-mercaptopropionic acid (3-MPA) and ascorbic acid. The water-soluble complexes 1 and 3 also show prominent hydrolytic DNA cleavage. From the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging assay, it was observed that complex 2 also exhibits good antioxidant properties. The cytotoxicity of complexes 1-3 was tested against the lung cancer cell line (A549) and complex 2 with -NCS moiety shows maximum activity in the micromolar range. A rationale for the observed activity is proposed in light of the other properties of these molecules.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Complexos de Coordenação/farmacologia , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antioxidantes/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Benzotiazóis/síntese química , Benzotiazóis/metabolismo , Catálise , Bovinos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Cobre/química , DNA/efeitos dos fármacos , Clivagem do DNA/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Ligantes , Ligação Proteica , Soroalbumina Bovina/metabolismo
8.
Front Cell Dev Biol ; 8: 354, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32509782

RESUMO

Senescence is a cellular defense mechanism that helps cells prevent acquired damage, but chronic senescence, as in aging, can contribute to the development of age-related tissue dysfunction and disease. Previous studies clearly show that removal of senescent cells can help prevent tissue dysfunction and extend healthspan during aging. Senescence increases with age in the skeletal system, and selective depletion of senescent cells or inhibition of their senescence-associated secretory phenotype (SASP) has been reported to maintain or improve bone mass in aged mice. This suggests that promoting the selective removal of senescent cells, via the use of senolytic agents, can be beneficial in the treatment of aging-related bone loss and osteoporosis. Navitoclax (also known as ABT-263) is a chemotherapeutic drug reported to effectively clear senescent hematopoietic stem cells, muscle stem cells, and mesenchymal stromal cells in previous studies, but its in vivo effects on bone mass had not yet been reported. Therefore, the purpose of this study was to assess the effects of short-term navitoclax treatment on bone mass and osteoprogenitor function in old mice. Aged (24 month old) male and female mice were treated with navitoclax (50 mg/kg body mass daily) for 2 weeks. Surprisingly, despite decreasing senescent cell burden, navitoclax treatment decreased trabecular bone volume fraction in aged female and male mice (-60.1% females, -45.6% males), and BMSC-derived osteoblasts from the navitoclax treated mice were impaired in their ability to produce a mineralized matrix (-88% females, -83% males). Moreover, in vitro administration of navitoclax decreased BMSC colony formation and calcified matrix production by aged BMSC-derived osteoblasts, similar to effects seen with the primary BMSC from the animals treated in vivo. Navitoclax also significantly increased metrics of cytotoxicity in both male and female osteogenic cultures (+1.0 to +11.3 fold). Taken together, these results suggest a potentially harmful effect of navitoclax on skeletal-lineage cells that should be explored further to definitively assess navitoclax's potential (or risk) as a therapeutic agent for combatting age-related musculoskeletal dysfunction and bone loss.

9.
ACS Chem Neurosci ; 11(10): 1471-1481, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32310630

RESUMO

Alzheimer's disease (AD) is the most common neurodegenerative disease, and its main hallmark is the deposition of amyloid beta (Aß) peptides. However, several clinical trials focusing on Aß-targeting agents have failed recently, and thus new therapeutic leads are focusing on alternate targets such as tau protein pathology, Aß-metal induced oxidative stress, and neuroinflammation. To address these different pathological aspects of AD, we have employed a multifunctional compound, L1 [4-(benzo[d]thiazol-2-yl)-2-((4,7-dimethyl-1,4,7-triazonan-1-yl)methyl)-6-methoxyphenol], that integrates Aß-interacting and metal-binding fragments in a single molecular framework, exhibits significant antioxidant activity and metal chelating ability, and also rescues neuroblastoma N2A cells from Cu2+-induced Aß neurotoxicity. Along with demonstrating in vivo Aß-binding and favorable brain uptake properties, L1 treatment of transgenic 5xFAD mice significantly reduces the amount of both amyloid plaques and associated phosphorylated tau (p-tau) aggregates in the brain by 40-50% versus the vehicle-treated 5xFAD mice. Moreover, L1 mitigates the neuroinflammatory response of the activated microglia during the Aß-induced inflammation process. Overall, these multifunctional properties of L1 to attenuate the formation of amyloid plaques and associated p-tau aggregates while also reducing the microglia-mediated neuroinflammatory response are quite uncommon among the previously reported amyloid-targeting chemical agents, and thus L1 could be envisioned as a lead compound for the development of novel AD therapeutics.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Doença de Alzheimer/tratamento farmacológico , Amiloide , Peptídeos beta-Amiloides , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Placa Amiloide/tratamento farmacológico
10.
Dalton Trans ; 49(13): 4100-4113, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32141470

RESUMO

In the current study, four novel mononuclear Cu(ii) complexes with terpyridine (L) and different co-ligands (phen, bipy, and imd) were synthesized and characterized in detail, where L is 4'-(3,4,5-trimethoxyphenyl)-2,2':6',2''-terpyridine. The identity and purity of all complexes were determined by elemental analysis, spectroscopic techniques (UV-vis, FTIR, ESI-MS, and EPR) and CV, including single crystal X-ray determination of three complexes ([Cu(L)(phen)](ClO4)2 (C-I), [Cu(L)2](ClO4)2 (C-II) and [Cu(L)(imd)(ClO4)](ClO4) (C-IV). DNA binding studies were performed using fluorescence assay and the binding constants were calculated using the Stern-Volmer equation and the modified Stern-Volmer equation. The magnitude of Kapp of all complexes was 105 M-1, indicating moderate intercalative binding between CT-DNA and the complexes. Agarose gel electrophoresis clearly reflected their ability to cleave a double stranded pET-28b plasmid in the presence of an external reducing agent (3-mercapto propionic acid). Steady-state fluorescence quenching was performed to understand their interactions with BSA. The studies suggested a mixed quenching mechanism with an initial static process. Furthermore, the antiproliferative activity of the complexes was evaluated against lung cancer A549 cells and primary mice splenocytes. Interestingly, the complexes show 25-200 fold greater toxicity towards the A549 cells than primary splenocytes, indicating their selectivity towards the former. The good binding behavior of all four complexes towards DNA and BSA and their cytotoxicity render these compounds promising potent anticancer drugs.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Cobre/farmacologia , DNA/efeitos dos fármacos , Piridinas/farmacologia , Soroalbumina Bovina/efeitos dos fármacos , Células A549 , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sítios de Ligação/efeitos dos fármacos , Bovinos , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Cristalografia por Raios X , DNA/química , Clivagem do DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Estrutura Molecular , Piridinas/química , Soroalbumina Bovina/química
11.
Exp Gerontol ; 133: 110885, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32088397

RESUMO

Tryptophan is an essential amino acid catabolized initially to kynurenine (kyn), an immunomodulatory metabolite that we have previously shown to promote bone loss. Kyn levels increase with aging and have also been associated with neurodegenerative disorders. Picolinic acid (PA) is another tryptophan metabolite downstream of kyn. However, in contrast to kyn, PA is reported to be neuroprotective and further, to promote osteogenesis in vitro. Thus, we hypothesized that PA might be osteoprotective in vivo. In an IACUC-approved protocol, we fed PA to aged (23-month-old) C57BL/6 mice for eight weeks. In an effort to determine potential interactions of PA with dietary protein we also fed PA in a low-protein diet (8%). The mice were divided into four groups: Control (18% dietary protein), +PA (700 ppm); Low-protein (8%), +PA (700 ppm). The PA feedings had no impact on mouse weight, body composition or bone density. At sacrifice bone and stem cells were collected for analysis, including µCT and RT-qPCR. Addition of PA to the diet had no impact on trabecular bone parameters. However, marrow adiposity was significantly increased in PA-fed mice, and in bone marrow stromal cells isolated from these mice increases in the expression of the lipid storage genes, Plin1 and Cidec, were observed. Thus, as a downstream metabolite of kyn, PA no longer showed kyn's detrimental effects on bone but instead appears to impact energy balance.


Assuntos
Adiposidade , Triptofano , Animais , Densidade Óssea , Medula Óssea , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Picolínicos
12.
Curr Osteoporos Rep ; 17(6): 438-445, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31749087

RESUMO

PURPOSE OF REVIEW: The development of adiposity in the bone marrow, known as marrow adipose tissue (MAT), is often associated with musculoskeletal frailty. Glucocorticoids, which are a key component of the biological response to stress, affect both bone and MAT. These molecules signal through receptors such as the glucocorticoid receptor (GR), but the role of the GR in regulation of MAT is not yet clear from previous studies. The purpose of this review is to establish and determine the role of GR-mediated signaling in marrow adiposity by comparing and contrasting what is known against other energy-storing tissues like adipose tissue, liver, and muscle, to provide better insight into the regulation of MAT during times of metabolic stress (e.g., dietary challenges, aging). RECENT FINDINGS: GR-mediated glucocorticoid signaling is critical for proper storage and utilization of lipids in cells such as adipocytes and hepatocytes and proteolysis in muscle, impacting whole-body composition, energy utilization, and homeostasis through a complex network of tissue cross talk between these systems. Loss of GR signaling in bone promotes increased MAT and decreased bone mass. GR-mediated signaling in the liver, adipose tissue, and muscle is critical for whole-body energy and metabolic homeostasis, and both similarities and differences in GR-mediated GC signaling in MAT as compared with these tissues are readily apparent. It is clear that GC-induced pathways work together through these tissues to affect systemic biology, and understanding the role of bone in these patterns of tissue cross talk may lead to a better understanding of MAT-bone biology that improves treatment strategies for frailty-associated diseases.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Medula Óssea/metabolismo , Metabolismo Energético , Glucocorticoides/metabolismo , Fígado/metabolismo , Músculo Esquelético/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Homeostase , Humanos , Receptor Cross-Talk , Transdução de Sinais , Estresse Fisiológico
13.
Materials (Basel) ; 12(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083414

RESUMO

Two-dimensional (2D) heterostructure materials show captivating properties for application in surface plasmon resonance (SPR) sensors. A fluoride fiber-based SPR sensor is proposed and simulated with the inclusion of a 2D heterostructure as the analyte interacting layer. The monolayers of two 2D heterostructures (BlueP/MoS2 and BlueP/WS2, respectively) are considered in near infrared (NIR). In NIR, an HBL (62HfF4-33BaF2-5LaF3) fluoride glass core and NaF clad are considered. The emphasis is placed on figure of merit (FOM) enhancement via optimization of radiation damping through simultaneous tuning of Ag thickness (dm) and NIR wavelength (λ) at the Ag-2D heterostructure-analyte interfaces. Field distribution analysis is performed in order to understand the interaction of NIR signal with analyte at optimum radiation damping (ORD) condition. While the ORD leads to significantly larger FOM for both, the BlueP/MoS2 (FOM = 19179.69 RIU-1 (RIU: refractive index unit) at dm = 38.2 nm and λ = 813.4 nm)-based sensor shows massively larger FOM compared with the BlueP/WS2 (FOM = 7371.30 RIU-1 at dm = 38.2 nm and λ = 811.2 nm)-based sensor. The overall sensing performance was more methodically evaluated in terms of the low degree of photodamage of the analyte, low signal scattering, high power loss, and large field variation. The BlueP/MoS2-based fiber SPR sensor under ORD conditions opens up new paths for biosensing with highly enhanced overall performance.

14.
Front Physiol ; 9: 885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30104978

RESUMO

The chronic exposure of humans to toxic metals such as cadmium from food and air causes dysfunction of vital organs, neurodegenerative conditions, and cancer. In this regard, members of the ABCB sub-family of the ATP-binding cassette (ABC) transporter superfamily, ABCB6/HMT-1, are acutely required for the detoxification of heavy metals and are present in genomes of many organisms including the nematode worm, Caenorhabditis elegans and humans. We showed previously that C. elegans ABCB6/HMT-1 detoxifies cadmium, copper, and arsenic, and is expressed in liver-like cells, the coelomocytes, head neurons and intestinal cells, which are the cell types that are affected by heavy metal poisoning in humans. The subcellular localization of ABCB6/HMT-1 proteins is unclear. ABCB6/HMT-1 proteins have a distinguishing topology: in addition to one transmembrane domain and one nucleotide-binding domain, they possess a hydrophobic N-terminal extension (NTE) domain encompassing five to six transmembrane spans. The role of the NTE domain in the function of ABCB6/HMT-1 in the native organism remains to be investigated. We used a versatile, multicellular model system, C. elegans, to establish the subcellular localization of ABCB6/HMT-1 and refine its structure-function studies in the native organism. We show that ABCB6/HMT-1 localizes mainly to the apical recycling endosomes and, in part, to early and late endosomes of intestinal cells. We also show that ABCB6/HMT-1 lacking the NTE domain is mistargeted to the plasma membrane and is unable to confer cadmium resistance. Although the NTE domain is essential for ABCB6/HMT-1 interaction with itself, the absence of NTE does not fully prevent this interaction. As a result, ABCB6/HMT-1 lacking the NTE domain, and expressed in wild-type worms or co-expressed with the full-length polypeptide, inactivates and mistargets the full-length ABCB6/HMT-1. We also show that the 43 amino acid residue stretch at the COOH-terminus is required for the ABCB6/HMT-1 interaction with itself and cadmium detoxification function. These results suggest that both NTE and COOH-terminus must be present to allow the protein to interact with itself and confer cadmium resistance. Considering that ABCB6/HMT-1 proteins are highly conserved, this study advances our understanding of how these proteins function in cadmium resistance in different species. Furthermore, these studies uncover the role of the endosomal-recycling system in cadmium detoxification.

15.
Med J Armed Forces India ; 73(3): 256-260, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28790783

RESUMO

BACKGROUND: Bile leakage (BL) is a common complication following liver surgery, ranging from 3 to 27% in different series. To reduce the incidence of post-operative BL various BL tests have been applied since ages, but no method is foolproof and every method has their own limitations. In this study we used a relatively simpler technique to detect the BL intra-operatively. Topical application of 1.5% diluted hydrogen peroxide (H2O2) was used to detect the BL from cut surface of liver and we compared this with conventional saline method to know the efficacy. METHODS: A total of 31 patients included all patients who underwent liver resection and donor hepatectomies as part of Living Donor Liver Transplantation. After complete liver resection, the conventional saline test followed by topical diluted 1.5% H2O2 test was performed on all. RESULTS: A BL was demonstrated in 11 patients (35.48%) by the conventional saline method and in 19 patients (61.29%) by H2O2 method. Statistically compared by Wilcoxon signed-rank test showed significant difference (P = 0.014) for minor liver resections group and (P = 0.002) for major liver resections group. CONCLUSION: The topical application of H2O2 is a simple and effective method of detection of BL from cut surface of liver. It is an easy, non-invasive, cheap, less time consuming, reproducible, and sensitive technique with no obvious disadvantages.

16.
J Cancer Res Ther ; 11(3): 667, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26458710

RESUMO

Cutaneous metastasis from carcinoma esophagus is an extremely rare occurrence. It accounts for less than 1% among all cases of metastatic carcinoma esophagus. We present two such unusual cases in which the primary manifestation was cutaneous lesions. Histology from the biopsy of the lesion in one case was reported as adenocarcinoma and while that from the other case was reported as squamous cell carcinoma. A search for primary revealed previously unsuspected carcinoma esophagus in both the cases. The patients subsequently developed metachronous systemic lesions and expired within 5 months of appearance of the index skin lesion.


Assuntos
Adenocarcinoma/diagnóstico , Carcinoma de Células Escamosas/diagnóstico , Neoplasias Esofágicas/diagnóstico , Neoplasias Cutâneas/diagnóstico , Adenocarcinoma/secundário , Adulto , Carcinoma de Células Escamosas/secundário , Neoplasias Esofágicas/patologia , Humanos , Masculino , Pessoa de Meia-Idade
17.
Inorg Chem ; 53(21): 11367-76, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25333939

RESUMO

Multifunctional metal chelators that can modulate the amyloid ß (Aß) peptide aggregation and its interaction with metal ions such as copper and zinc hold considerable promise as therapeutic agents for Alzheimer's disease (AD). However, specific rather than systemic metal chelation by these compounds is needed in order to limit any side effects. Reported herein are two novel small bifunctional chelators, 2-[2-hydroxy-4-(diethylamino)phenyl]benzothiazole (L1) and 2-(2-hydroxy-3-methoxyphenyl)benzothiazole (L2), in which the metal-binding donor atoms are integrated within a molecular framework derived from the amyloid-binding fluorescent dye thioflavin T (ThT). The metal-binding properties of L1 and L2 were probed by pH spectrophotometric titrations to determine their pKa values and the corresponding metal complex stability constants, and the isolated metal complexes were structurally characterized. The amyloid-fibril-binding properties of L1 and L2 were investigated by fluorescence titrations and ThT competition assays. Interestingly, L1 and L2 do not lead to the formation of neurotoxic Aß42 oligomers in the presence or absence of metal ions, as observed by native gel electrophoresis, Western blotting, and transmission electron microscopy. In addition, L1 and L2 were able to reduce the cell toxicity of preformed Aß42 oligomers and of the copper-stabilized Aß42 oligomers. Given their ability to reduce the toxicity of soluble Aß42 and Cu-Aß42 species, L1 and L2 are promising lead compounds for the development of chemical agents that can control the neurotoxicity of soluble Aß42 species in AD.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/toxicidade , Quelantes/química , Quelantes/farmacologia , Agregados Proteicos/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quelantes/síntese química , Clioquinol/química , Clioquinol/farmacologia , Cristalografia por Raios X , Camundongos , Modelos Moleculares , Estrutura Molecular , Agregação Patológica de Proteínas
18.
Inorg Chem ; 53(1): 36-48, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24387744

RESUMO

A brownish-black complex [Fe(III)(L)2] (1) (S = 0), supported by two tridentate redox-active azo-appended o-amidophenolates [H2L = 2-(2-phenylazo)-anilino-4,6-di-tert-butylphenol], has been synthesized and structurally characterized. In CH2Cl2 1 displays two oxidative and two reductive 1e(-) redox processes at E1/2 values of 0.48 and 1.06 V and -0.42 and -1.48 V vs SCE, respectively. The one-electron oxidized form [1](+) isolated as a green solid [Fe(III)(L)2][BF4] (2) (S = 1/2) has been structurally characterized. Isolation of a dark ink-blue one-electron reduced form [1](-) has also been achieved [Co(III)(η(5)-C10H15)2][Fe(III)(L)2] (3) (S = 1/2). Mössbauer spectral parameters unequivocally establish that 1 is a low-spin (LS) Fe(III) complex. Careful analysis of Mössbauer spectral data of 2 and 3 at 200 and 80 K reveal that each complex has a major LS Fe(III) and a minor LS Fe(II) component (redox isomers): [Fe(III){(L(ISQ))(-•)}2](+) and [Fe(II){(L(IBQ))(0)}{(L(ISQ))(-•)}](+) (2) and [Fe(III){(L(AP))(2-)}2](-) and [Fe(II){(L(ISQ))(-•)}{(L(AP))(2-)}](-) (3). Notably, for both at 8 K mainly the major component exists. Broken-Symmetry (BS) Density Functional Theory (DFT) calculations at the B3LYP level reveals that in 1 the unpaired electron of LS Fe(III) is strongly antiferromagnetically coupled with a π-radical of o-iminobenzosemiquinonate(1-) (L(ISQ))(-•) form of the ligand, delocalized over two ligands providing 3- charge (X-ray structure). DFT calculations reveal that the unpaired electron in 2 is due to (L(ISQ))(-•) [LS Fe(III) (SFe = 1/2) is strongly antiferromagnetically coupled to one of the (L(ISQ))(-•) radicals (Srad = 1/2)] and 3 is primarily a LS Fe(III) complex, supported by two o-amidophenolate(2-) ligands. Time-Dependent-DFT calculations shed light on the origin of UV-vis-NIR spectral absorptions for 1-3. The collective consideration of Mössbauer, variable-temperature (77-298 K) electron paramagnetic resonance (EPR), and absorption spectral behavior at 298 K, and DFT results reveals that in 2 and 3 the valence-tautomerism is operative in the temperature range 80-300 K.

19.
Metallomics ; 5(11): 1529-36, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23995980

RESUMO

The coordination chemistry of Cu and Zn metal ions with the amyloid ß (Aß) peptides has attracted a lot of attention in recent years due to its implications in Alzheimer's disease. A number of reports indicate that Cu and Zn have profound effects on Aß aggregation. However, the impact of these metal ions on Aß oligomerization and fibrillization is still not well understood, especially for the more rapidly aggregating and more neurotoxic Aß42 peptide. Here we report the effect of Cu(2+) and Zn(2+) on Aß42 oligomerization and aggregation using a series of methods such as Thioflavin T (ThT) fluorescence, native gel and Western blotting, transmission electron microscopy (TEM), and cellular toxicity studies. Our studies suggest that both Cu(2+) and Zn(2+) ions inhibit Aß42 fibrillization. While presence of Cu(2+) stabilizes Aß42 oligomers, Zn(2+) leads to formation of amorphous, non-fibrillar aggregates. The effects of temperature, buffer, and metal ion concentration and stoichiometry were also studied. Interestingly, while Cu(2+) increases the Aß42-induced cell toxicity, Zn(2+) causes a significant decrease in Aß42 neurotoxicity. While previous reports have indicated that Cu(2+) can disrupt ß-sheets and lead to non-fibrillar Aß aggregates, the neurotoxic consequences were not investigated in detail. The data presented herein including cellular toxicity studies strongly suggest that Cu(2+) increases the neurotoxicity of Aß42 due to stabilization of soluble Aß42 oligomers.


Assuntos
Peptídeos beta-Amiloides/química , Cobre/química , Cobre/toxicidade , Zinco/química , Zinco/toxicidade , Animais , Benzotiazóis , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fluorescência , Camundongos , Ligação Proteica/efeitos dos fármacos , Tiazóis/química
20.
Opt Lett ; 34(6): 749-51, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19282920

RESUMO

A high-accuracy aluminum-based surface plasmon resonance (SPR) chalcogenide sensor is proposed for IR. The structure is based on widely used 2S2G chalcogenide glass with aluminum as the SPR active metal. The angular interrogation method has been used to study the performance of the sensor in terms of intrinsic sensitivity (IS) that includes the width and shifts of the SPR curve for a given refractive index of sensing layer. The IS of Al-based chalcogenide glass sensor is almost 400% more as compared with an Au-based one, which is the most widely used SPR active metal. The oxidation problem of an Al-based SPR sensor has been addressed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA