Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(3): e55972, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601394

RESUMO

Immune checkpoint inhibitors (ICIs) are becoming increasingly popular in treating cancers resistant to traditional chemotherapy. While ICIs have shown promise in treating cancer, the class of drugs also comes with certain risks, such as the development of pneumatosis intestinalis (PI) in rare cases. Pembrolizumab, an ICI that inhibits programmed cell death protein 1 (PD-1), has, in some rare instances, caused PI. Patients with ICI-induced PI may also present with pneumoperitoneum, pneumoretroperitoneum, pneumomediastinum, and pneumobilia. In the current report, we describe the presentation and management of a 50-year-old female with initial complaints of diffuse abdominal pain, constipation, abdominal distension, nausea, and decreased urine output approximately six months after beginning pembrolizumab and two months after the most recent dose of pembrolizumab. Subsequent CT imaging revealed massive PI with pneumoperitoneum, pneumoretroperitoneum, pneumomediastinum, and pneumobilia suspected to be secondary to pembrolizumab. Here, we discuss the possible mechanisms of ICI-induced PI and evaluate the management of patients presenting with PI and pneumoperitoneum.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37956000

RESUMO

When compared to fundamental B-mode imaging, coherence-based beamforming, and harmonic imaging are independently known to reduce acoustic clutter, distinguish solid from fluid content in indeterminate breast masses, and thereby reduce unnecessary biopsies during a breast cancer diagnosis. However, a systematic investigation of independent and combined coherence beamforming and harmonic imaging approaches is necessary for the clinical deployment of the most optimal approach. Therefore, we compare the performance of fundamental and harmonic images created with short-lag spatial coherence (SLSC), M-weighted SLSC (M-SLSC), SLSC combined with robust principal component analysis with no M-weighting (r-SLSC), and r-SLSC with M-weighting (R-SLSC), relative to traditional fundamental and harmonic B-mode images, when distinguishing solid from fluid breast masses. Raw channel data acquired from 40 total breast masses (28 solid, 7 fluid, 5 mixed) were beamformed and analyzed. The contrast of fluid masses was better with fundamental rather than harmonic coherence imaging, due to the lower spatial coherence within the fluid masses in the fundamental coherence images. Relative to SLSC imaging, M-SLSC, r-SLSC, and R-SLSC imaging provided similar contrast across multiple masses (with the exception of clinically challenging complicated cysts) and minimized the range of generalized contrast-to-noise ratios (gCNRs) of fluid masses, yet required additional computational resources. Among the eight coherence imaging modes compared, fundamental SLSC imaging best identified fluid versus solid breast mass contents, outperforming fundamental and harmonic B-mode imaging. With fundamental SLSC images, the specificity and sensitivity to identify fluid masses using the reader-independent metrics of contrast difference, mean lag one coherence (LOC), and gCNR were 0.86 and 1, 1 and 0.89, and 1 and 1, respectively. Results demonstrate that fundamental SLSC imaging and gCNR (or LOC if no coherence image or background region of interest is introduced) have the greatest potential to impact clinical decisions and improve the diagnostic certainty of breast mass contents. These observations are additionally anticipated to extend to masses in other organs.


Assuntos
Neoplasias da Mama , Ultrassonografia Mamária , Feminino , Humanos , Mama/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Análise de Componente Principal , Acústica
3.
J Biomed Opt ; 28(9): 097001, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37671115

RESUMO

Significance: Multispectral photoacoustic imaging has the potential to identify lipid-rich, myelinated nerve tissue in an interventional or surgical setting (e.g., to guide intraoperative decisions when exposing a nerve during reconstructive surgery by limiting operations to nerves needing repair, with no impact to healthy or regenerating nerves). Lipids have two optical absorption peaks within the NIR-II and NIR-III windows (i.e., 1000 to 1350 nm and 1550 to 1870 nm wavelength ranges, respectively) which can be exploited to obtain photoacoustic images. However, nerve visualization within the NIR-III window is more desirable due to higher lipid absorption peaks and a corresponding valley in the optical absorption of water. Aim: We present the first known optical absorption characterizations, photoacoustic spectral demonstrations, and histological validations to support in vivo photoacoustic nerve imaging in the NIR-III window. Approach: Four in vivo swine peripheral nerves were excised, and the optical absorption spectra of these fresh ex vivo nerves were characterized at wavelengths spanning 800 to 1880 nm, to provide the first known nerve optical absorbance spectra and to enable photoacoustic amplitude spectra characterization with the most optimal wavelength range. Prior to excision, the latter two of the four nerves were surrounded by aqueous, lipid-free, agarose blocks (i.e., 3% w/v agarose) to enhance acoustic coupling during in vivo multispectral photoacoustic imaging using the optimal NIR-III wavelengths (i.e., 1630 to 1850 nm) identified in the ex vivo studies. Results: There was a verified characteristic lipid absorption peak at 1725 nm for each ex vivo nerve. Results additionally suggest that the 1630 to 1850 nm wavelength range can successfully visualize and differentiate lipid-rich nerves from surrounding water-containing and lipid-deficient tissues and materials. Conclusions: Photoacoustic imaging using the optimal wavelengths identified and demonstrated for nerves holds promise for detection of myelination in exposed and isolated nerve tissue during a nerve repair surgery, with possible future implications for other surgeries and other optics-based technologies.


Assuntos
Acústica , Bainha de Mielina , Animais , Suínos , Sefarose , Análise Espectral , Água
4.
Cureus ; 12(6): e8868, 2020 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-32754405

RESUMO

Scalpel-bougie cricothyroidotomy is the most common surgical procedure to obtain emergency airway access when routine methods fail. We present a case of a broken scalpel blade during emergency cricothyroidotomy further complicating respiratory access.

5.
Indian J Anaesth ; 64(1): 37-42, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32001907

RESUMO

BACKGROUND AND AIMS: Intermediate cervical plexus block (CPB) is a new procedure whose analgesic efficacy compared to superficial cervical plexus block is yet to be established. We compared the analgesic efficacy of superficial vs intermediate CPB for post-operative analgesia after thyroid surgery. METHODS: Forty-five patients with American Society of Anaesthesiologists' physical status 1 or 2 undergoing total thyroidectomy were recruited. Forty-four patients in superficial/subcutaneous CPB group (n = 22) and intermediate CPB (n = 22) received 20 mL 0.25% bupivacaine with adrenaline 100 µg bilaterally in ultrasound-guided superficial and intermediate cervical plexus block before induction of general anaesthesia., respectively. The primary outcome measure was the postoperative visual analogue scale (VAS) scores at 0, 2, 4, 6, 12 and 24. Secondary outcome measures included the total dose of rescue analgesic required, duration of postoperative analgesia and patient's satisfaction score. Statistical analysis was with the Mann-Whitney U test and independent t-test. RESULTS: The post-operative VAS scores were lower in intermediate CPB group compared to superficial CPB group at 2, 4, 6, 12, 18 and 24 h [P < 0.05]. Time tofirst rescue analgesic demand was prolonged 10.06 ± 3.62 h in intermediate group compared to 7.94 ± 3.62 h in superficial group [P = 0.017] and total analgesic consumption were lower in intermediate group (71.25 ± 16.70 µg) than the superficial group (101.25 ± 50.31 µg) [P = 0.011]. CONCLUSION: Ultrasound-guided intermediate CPB reduces post-operative pain scores, prolongs duration of analgesia and decreases demands for rescue analgesia compared to superficial CPB.

6.
J Biophotonics ; 13(4): e201960108, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31908159

RESUMO

Chicken embryos have been proven to be an attractive vertebrate model for biomedical research. They have helped in making significant contributions for advancements in various fields like developmental biology, cancer research and cardiovascular studies. However, a non-invasive, label-free method of imaging live chicken embryo at high resolution still needs to be developed and optimized. In this work, we have shown the potential of photoacoustic tomography (PAT) for imaging live chicken embryos cultured in bioengineered eggshells. Laser pulses at wavelengths of 532 and 740 nm were used for attaining cross-sectional images of chicken embryos at different developmental stages. Cross-sections along different depths were imaged to gain knowledge of the relative depth of different vessels and organs. Due to high optical absorption of vasculature and embryonic eye, images with good optical contrast could be acquired using this method. We have thus reported a label-free method of performing cross-sectional imaging of chicken embryos at high resolution demonstrating the capacity of PAT as a promising tool for avian embryo imaging.


Assuntos
Casca de Ovo , Técnicas Fotoacústicas , Animais , Embrião de Galinha , Galinhas , Diagnóstico por Imagem , Lasers
7.
Adv Mater ; 31(11): e1808166, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30663820

RESUMO

Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window (1000-1700 nm) holds great promise for deep-tissue diagnosis due to the reduced light scattering and minimized tissue absorption; however, exploration of such a noninvasive imaging technique is greatly constrained by the lack of biodegradable NIR-II absorbing agents. Herein, the first series of metabolizable NIR-II PA agents are reported based on semiconducting polymer nanoparticles (SPNs). Such completely organic nanoagents consist of π-conjugated yet oxidizable optical polymer as PA generator and hydrolyzable amphiphilic polymer as particle matrix to provide water solubility. The obtained SPNs are readily degraded by myeloperoxidase and lipase abundant in phagocytes, transforming from nonfluorescent nanoparticles (30 nm) into NIR fluorescent ultrasmall metabolites (≈1 nm). As such, these nanoagents can be effectively cleared out via both hepatobiliary and renal excretions after systematic administration, leaving no toxicity to living mice. Particularly these nanoagents possess high photothermal conversion efficiencies and emit bright PA signals at 1064 nm, enabling sensitive NIR-II PA imaging of both subcutaneous tumor and deep brain vasculature through intact skull in living animals at a low systematic dosage. This study thus provides a generalized molecular design toward organic metabolizable semiconducting materials for biophotonic applications in NIR-II window.

8.
J Biophotonics ; 12(5): e201800357, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30511496

RESUMO

Photoacoustic imaging is a noninvasive imaging technique having the advantages of high-optical contrast and good acoustic resolution at improved imaging depths. Light transport in biological tissues is mainly characterized by strong optical scattering and absorption. Photoacoustic microscopy is capable of achieving high-resolution images at greater depth compared to conventional optical microscopy methods. In this work, we have developed a high-resolution, acoustic resolution photoacoustic microscopy (AR-PAM) system in the near infra-red (NIR) window II (NIR-II, eg, 1064 nm) for deep tissue imaging. Higher imaging depth is achieved as the tissue scattering at 1064 nm is lesser compared to visible or near infrared window-I (NIR-I). Our developed system can provide a lateral resolution of 130 µm, axial resolution of 57 µm, and image up to 11 mm deep in biological tissues. This 1064-AR-PAM system was used for imaging sentinel lymph node and the lymph vessel in rat. Urinary bladder of rat filled with black ink was also imaged to validate the feasibility of the developed system to study deeply seated organs.


Assuntos
Acústica , Microscopia/métodos , Técnicas Fotoacústicas/métodos , Razão Sinal-Ruído , Animais , Estudos de Viabilidade , Feminino , Ratos , Ratos Sprague-Dawley , Linfonodo Sentinela/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA