Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37736248

RESUMO

Breast cancer is one of the most commonly diagnosed cancers among women, however the complete cure for metastatic breast cancer is lacking due to poor prognosis. There has been an increasing trend of dietary modifications including consumption of natural food for the prevention of cancer. One of the popular natural foods is bitter melon. Bitter melon grows in tropical and subtropical areas. Some of the beneficial effects of bitter melon towards disease including cancer have been reported at the whole body/organismal level. However, specific cellular mechanisms by which bitter melon exerts beneficial effects in breast cancer are lacking. In this study, we used a human metastatic breast cancer cell line, MCF-7 cell, to study if bitter melon alters glucose clearance from the culture medium. We co-cultured MCF-7 cells with bitter melon extract in the presence and absence of supplemented insulin and subsequently measured MCF-7 cells viability. In this study, we report a noble finding that bitter melon extract exerts cytotoxic effects on MCF-7 cells possibly via inhibition of glucose uptake. Our findings show that insulin rescues MCF-7 cells from the effects of bitter melon extract.

2.
J Vis Exp ; (157)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225157

RESUMO

Here, we describe an in vitro culture assay to study coronary angiogenesis. Coronary vessels feed the heart muscle and are of clinical importance. Defects in these vessels represent severe health risks such as in atherosclerosis, which can lead to myocardial infarctions and heart failures in patients. Consequently, coronary artery disease is one of the leading causes of death worldwide. Despite its clinical importance, relatively little progress has been made on how to regenerate damaged coronary arteries. Nevertheless, recent progress has been made in understanding the cellular origin and differentiation pathways of coronary vessel development. The advent of tools and technologies that allow researchers to fluorescently label progenitor cells, follow their fate, and visualize progenies in vivo have been instrumental in understanding coronary vessel development. In vivo studies are valuable, but have limitations in terms of speed, accessibility, and flexibility in experimental design. Alternatively, accurate in vitro models of coronary angiogenesis can circumvent these limitations and allow researchers to interrogate important biological questions with speed and flexibility. The lack of appropriate in vitro model systems may have hindered the progress in understanding the cellular and molecular mechanisms of coronary vessel growth. Here, we describe an in vitro culture system to grow coronary vessels from the sinus venosus (SV) and endocardium (Endo), the two progenitor tissues from which many of the coronary vessels arise. We also confirmed that the cultures accurately recapitulate some of the known in vivo mechanisms. For instance, we show that the angiogenic sprouts in culture from SV downregulate COUP-TFII expression similar to what is observed in vivo. In addition, we show that VEGF-A, a well-known angiogenic factor in vivo, robustly stimulates angiogenesis from both the SV and Endo cultures. Collectively, we have devised an accurate in vitro culture model to study coronary angiogenesis.


Assuntos
Vasos Coronários/fisiologia , Modelos Biológicos , Neovascularização Fisiológica , Animais , Fator II de Transcrição COUP/metabolismo , Reprogramação Celular , Vasos Coronários/embriologia , Dissecação , Embrião de Mamíferos/irrigação sanguínea , Matriz Extracelular/metabolismo , Feminino , Coração/embriologia , Coração/fisiologia , Ventrículos do Coração/embriologia , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Gravidez , Técnicas de Cultura de Tecidos , Fixação de Tecidos , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Cell ; 176(5): 1128-1142.e18, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30686582

RESUMO

Collateral arteries are an uncommon vessel subtype that can provide alternate blood flow to preserve tissue following vascular occlusion. Some patients with heart disease develop collateral coronary arteries, and this correlates with increased survival. However, it is not known how these collaterals develop or how to stimulate them. We demonstrate that neonatal mouse hearts use a novel mechanism to build collateral arteries in response to injury. Arterial endothelial cells (ECs) migrated away from arteries along existing capillaries and reassembled into collateral arteries, which we termed "artery reassembly". Artery ECs expressed CXCR4, and following injury, capillary ECs induced its ligand, CXCL12. CXCL12 or CXCR4 deletion impaired collateral artery formation and neonatal heart regeneration. Artery reassembly was nearly absent in adults but was induced by exogenous CXCL12. Thus, understanding neonatal regenerative mechanisms can identify pathways that restore these processes in adults and identify potentially translatable therapeutic strategies for ischemic heart disease.


Assuntos
Circulação Colateral/fisiologia , Coração/crescimento & desenvolvimento , Regeneração/fisiologia , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Quimiocina CXCL12/metabolismo , Vasos Coronários/crescimento & desenvolvimento , Células Endoteliais/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais
4.
Nat Commun ; 9(1): 368, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29371594

RESUMO

During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.


Assuntos
Adenosina Trifosfatases/metabolismo , Endotélio Vascular/metabolismo , Cardiopatias Congênitas/metabolismo , Neovascularização Patológica/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Adenosina Trifosfatases/genética , Animais , Vasos Coronários/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Endocárdio/metabolismo , Endocárdio/patologia , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Cardiopatias Congênitas/genética , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Humanos , Camundongos Knockout , Camundongos Transgênicos , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Patológica/genética
5.
Sci Transl Med ; 9(407)2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28904225

RESUMO

Treatment of type 2 diabetes mellitus continues to pose an important clinical challenge, with most existing therapies lacking demonstrable ability to improve cardiovascular outcomes. The atheroprotective peptide apelin (APLN) enhances glucose utilization and improves insulin sensitivity. However, the mechanism of these effects remains poorly defined. We demonstrate that the expression of APLNR (APJ/AGTRL1), the only known receptor for apelin, is predominantly restricted to the endothelial cells (ECs) of multiple adult metabolic organs, including skeletal muscle and adipose tissue. Conditional endothelial-specific deletion of Aplnr (AplnrECKO ) resulted in markedly impaired glucose utilization and abrogation of apelin-induced glucose lowering. Furthermore, we identified inactivation of Forkhead box protein O1 (FOXO1) and inhibition of endothelial expression of fatty acid (FA) binding protein 4 (FABP4) as key downstream signaling targets of apelin/APLNR signaling. Both the Apln-/- and AplnrECKO mice demonstrated increased endothelial FABP4 expression and excess tissue FA accumulation, whereas concurrent endothelial Foxo1 deletion or pharmacologic FABP4 inhibition rescued the excess FA accumulation phenotype of the Apln-/- mice. The impaired glucose utilization in the AplnrECKO mice was associated with excess FA accumulation in the skeletal muscle. Treatment of these mice with an FABP4 inhibitor abrogated these metabolic phenotypes. These findings provide mechanistic insights that could greatly expand the therapeutic repertoire for type 2 diabetes and related metabolic disorders.


Assuntos
Receptores de Apelina/metabolismo , Apelina/metabolismo , Endotélio/metabolismo , Ácidos Graxos/metabolismo , Glucose/metabolismo , Envelhecimento/metabolismo , Animais , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos Knockout , Transdução de Sinais
6.
Dev Cell ; 42(6): 655-666.e3, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28890073

RESUMO

Organogenesis during embryonic development occurs through the differentiation of progenitor cells. This process is extraordinarily accurate, but the mechanisms ensuring high fidelity are poorly understood. Coronary vessels of the mouse heart derive from at least two progenitor pools, the sinus venosus and endocardium. We find that the ELABELA (ELA)-APJ signaling axis is only required for sinus venosus-derived progenitors. Because they do not depend on ELA-APJ, endocardial progenitors are able to expand and compensate for faulty sinus venosus development in Apj mutants, leading to normal adult heart function. An upregulation of endocardial SOX17 accompanied compensation in Apj mutants, which was also seen in Ccbe1 knockouts, indicating that the endocardium is activated in multiple cases where sinus venosus angiogenesis is stunted. Our data demonstrate that by diversifying their responsivity to growth cues, distinct coronary progenitor pools are able to compensate for each other during coronary development, thereby providing robustness to organ development.


Assuntos
Proteínas de Transporte/metabolismo , Vasos Coronários/embriologia , Neovascularização Fisiológica , Receptores Acoplados a Proteínas G/deficiência , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Receptores de Apelina , Vasos Coronários/metabolismo , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Endocárdio/metabolismo , Proteínas HMGB/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação/genética , Miocárdio/patologia , Hormônios Peptídicos , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição SOXF/metabolismo , Transdução de Sinais , Regulação para Cima
7.
Sarcoidosis Vasc Diffuse Lung Dis ; 33(3): 302-304, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27758999

RESUMO

We report a case of orbital sarcoidosis in a 66 year old male who presented with one month history of right eye swelling and intermittent diplopia. MRI revealed an enhancing infiltrative soft tissue mass in the inferior aspect of the right orbit and biopsy of the mass demonstrated non-necrotizing granulomas. Chest CT scan was normal and PET scan showed no other organ involvement. He was treated with tapering doses of prednisone over six months. Although relapse occurred while tapering prednisone to 20 mg per day, he responded well to the addition of azathioprine with complete resolution of visual difficulties and orbital the mass on repeat MRI. Sarcoidosis, presenting as an isolated orbital mass is rare, can be successfully treated and should be included in differential diagnosis.


Assuntos
Doenças Palpebrais/complicações , Músculos Oculomotores , Sarcoidose/complicações , Idoso , Azatioprina/administração & dosagem , Biópsia , Diplopia/etiologia , Esquema de Medicação , Quimioterapia Combinada , Doenças Palpebrais/diagnóstico , Doenças Palpebrais/tratamento farmacológico , Glucocorticoides/administração & dosagem , Humanos , Imunossupressores/administração & dosagem , Imageamento por Ressonância Magnética , Masculino , Músculos Oculomotores/diagnóstico por imagem , Músculos Oculomotores/efeitos dos fármacos , Músculos Oculomotores/patologia , Tomografia por Emissão de Pósitrons , Prednisona/administração & dosagem , Recidiva , Sarcoidose/diagnóstico , Sarcoidose/tratamento farmacológico , Fatores de Tempo , Tomografia Computadorizada por Raios X , Resultado do Tratamento , Uveíte Anterior/etiologia
8.
Dev Biol ; 418(2): 227-41, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27565024

RESUMO

The Notch signaling cascade is an evolutionarily ancient system that allows cells to interact with their microenvironmental neighbors through direct cell-cell interactions, thereby directing a variety of developmental processes. Recent research is discovering that Notch signaling is also responsive to a broad variety of stimuli beyond cell-cell interactions, including: ECM composition, crosstalk with other signaling systems, shear stress, hypoxia, and hyperglycemia. Given this emerging understanding of Notch responsiveness to microenvironmental conditions, it appears that the classical view of Notch as a mechanism enabling cell-cell interactions, is only a part of a broader function to integrate microenvironmental cues. In this review, we summarize and discuss published data supporting the idea that the full function of Notch signaling is to serve as an integrator of microenvironmental signals thus allowing cells to sense and respond to a multitude of conditions around them.


Assuntos
Receptores Notch/fisiologia , Animais , Microambiente Celular/fisiologia , Matriz Extracelular/fisiologia , Humanos , Hiperglicemia/fisiopatologia , Hipóxia/fisiopatologia , Integrinas/fisiologia , Modelos Biológicos , Receptor Cross-Talk/fisiologia , Transdução de Sinais/fisiologia , Estresse Fisiológico/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Fator A de Crescimento do Endotélio Vascular/fisiologia , Via de Sinalização Wnt/fisiologia
10.
Development ; 141(23): 4500-12, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25377552

RESUMO

Identifying coronary artery progenitors and their developmental pathways could inspire novel regenerative treatments for heart disease. Multiple sources of coronary vessels have been proposed, including the sinus venosus (SV), endocardium and proepicardium, but their relative contributions to the coronary circulation and the molecular mechanisms regulating their development are poorly understood. We created an ApjCreER mouse line as a lineage-tracing tool to map SV-derived vessels onto the heart and compared the resulting lineage pattern with endocardial and proepicardial contributions to the coronary circulation. The data showed a striking compartmentalization to coronary development. ApjCreER-traced vessels contributed to a large number of arteries, capillaries and veins on the dorsal and lateral sides of the heart. By contrast, untraced vessels predominated in the midline of the ventral aspect and ventricular septum, which are vessel populations primarily derived from the endocardium. The proepicardium gave rise to a smaller fraction of vessels spaced relatively uniformly throughout the ventricular walls. Dorsal (SV-derived) and ventral (endocardial-derived) coronary vessels developed in response to different growth signals. The absence of VEGFC, which is expressed in the epicardium, dramatically inhibited dorsal and lateral coronary growth but left vessels on the ventral side unaffected. We propose that complementary SV-derived and endocardial-derived migratory routes unite to form the coronary vasculature and that the former requires VEGFC, revealing its role as a tissue-specific mediator of blood endothelial development.


Assuntos
Linhagem da Célula/fisiologia , Vasos Coronários/embriologia , Átrios do Coração/embriologia , Neovascularização Fisiológica/fisiologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Animais , Movimento Celular/fisiologia , Vasos Coronários/citologia , Átrios do Coração/citologia , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Mutantes , Microscopia de Fluorescência
11.
Cancer Microenviron ; 6(3): 263-71, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23775523

RESUMO

A series of overexpression studies have shown that lumican suppresses angiogenesis in tumors produced from pancreatic adenocarcinoma, fibrosarcoma, and melanoma tumor cells. Despite lumican's anti-angiogenic activity, a clear correlation of differential expression of lumican in various cancers and cancer malignancy has failed to emerge. Therefore, we hypothesized that either 1.) endogenously expressed lumican is not anti-angiogenic or alternatively that 2.) lumican exhibits angiostatic activity only in limited microenvironments. Previously, lumican was shown to suppress tumor growth and angiogenesis in subcutaneously injected PanO2 pancreatic adenocarcinoma cells. Therefore, to determine if endogenously expressed lumican is anti-angiogenic we subcutaneously injected PanO2 cells into wild-type and lumican knockout mice and compared tumor growth and vascular densities of the resulting tumors. We found that tumors grown in lumican knockout animals were larger and contained significantly elevated vascular densities compared to those grown in wild-type mice. Interestingly however lumican knockout animals did not exhibit enhanced angiogenesis in aortic ring assays, matrigel plugs, or healing wound biopsies raising the possibility that lumican suppresses angiogenesis only in tumor microenvironments. To test this possibility, we sought a tumor model wherein lumican did not exhibit anti-angiogenic activity. Utilizing the 4T1 breast cancer model, we found that lumican suppressed 4T1 tumor growth and lung metastasis, but not angiogenesis. In conclusion, these results show that the angiostatic activity of lumican is dependent on currently undefined microenvironmental cues and therefore helps to understand why differential expression of lumican does not consistently correlate with human tumor malignancy.

12.
Microvasc Res ; 85: 24-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23110920

RESUMO

Matrix Gla Protein (MGP) is an ECM molecule commonly associated with dysfunctions of large blood vessels such as arteriosclerosis and atherosclerosis. However, the exact role of MGP in the microvasculature is not clear. Utilizing a mouse MGP knockout model we found that MGP suppresses angiogenic sprouting from mouse aorta restricts microvascular density in cardiac and skeletal muscle, and is an endogenous inhibitor of tumor angiogenesis. Similarly, morpholino based knockdown of MGP in zebrafish embryos caused a progressive loss of luminal structures in intersegmental vessels, a phenotype reminiscent of Dll4/Notch inhibition. Accordingly, MGP suppressed Notch-dependent Hes-1 promoter activity and expression of Jagged1 mRNA relative to Dll4 mRNA. However, inhibition of BMP but not Notch or VEGF signaling reversed the excessive angiogenic sprouting phenotype of MGP knockout aortic rings suggesting that MGP may normally suppress angiogenic sprouting by blocking BMP signaling. Collectively, these results suggest that MGP is a multi-functional inhibitor of normal and abnormal angiogenesis that may function by coordinating with both Notch and BMP signaling pathways.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Proteínas da Matriz Extracelular/fisiologia , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Animais , Aorta/patologia , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirculação , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Neovascularização Fisiológica , Fenótipo , Reação em Cadeia da Polimerase/métodos , Receptores Notch/metabolismo , Peixe-Zebra , Proteína de Matriz Gla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA