Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(11): 4672-4681, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37844294

RESUMO

Silver ultrasmall nanoparticles (Ag UNPs) (size < 5 nm) were used as biosensing probes to analyze the efflux kinetics contributing to multidrug resistance (MDR) in single live triple-negative breast cancer (TNBC) cells by using dark-field optical microscopy to follow their size-dependent localized surface plasmon resonance. TNBC cells lack expression of estrogen (ER-), progesterone (PR-), and human epidermal growth factor 2 (HER2-) receptors and are more likely to acquire resistance to anticancer drugs due to their ability to transport harmful substances outside the cell. The TNBC cells displayed greater nuclear and cytoplasmic efflux, resulting in less toxicity of Ag UNPs in a concentration-independent manner. In contrast, more Ag UNPs and an increase in cytotoxic effects were observed in the receptor-positive breast cancer cells that have receptors for ER+, PR+, and HER2+ and are known to better respond to anticancer therapies. Ag UNPs accumulated in receptor-positive breast cancer cells in a time-and concentration-dependent mode and caused decreased cellular growth, whereas the TNBC cells due to the efflux were able to continue to grow. The TNBC cells demonstrated a marked increase in survival due to their ability to have MDR determined by efflux of Ag UNPs outside the nucleus and the cytoplasm of the cells. Further evaluation of the nuclear efflux kinetics of TNBC cells with Ag UNPs as biosensing probes is critical to gain a better understanding of MDR and potential for enhancement of cancer drug delivery.


Assuntos
Antineoplásicos , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Prata/farmacologia , Prata/uso terapêutico , Resistência a Múltiplos Medicamentos , Antineoplásicos/uso terapêutico
2.
ACS Chem Biol ; 13(12): 3374-3384, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30404440

RESUMO

A major risk for patients having estrogen receptor α (ERα)-positive breast cancer is the recurrence of drug-resistant metastases after initial successful treatment with endocrine therapies. Recent studies have implicated a number of activating mutations in the ligand-binding domain of ERα that stabilize the agonist conformation as a prominent mechanism for this acquired resistance. There are several critical gaps in our knowledge regarding the specific pharmacophore requirements of an antagonist that could effectively inhibit all or most of the different mutant ERs. To address this, we screened various chemotypes for blocking mutant ER-mediated transcriptional signaling and identified RU58668 as a model compound that contains structural elements that support potent ligand-induced inhibition of mutant ERs. We designed and synthesized a focused library of novel antagonists and probed how small and large perturbations in different ligand structural regions influenced inhibitory activity on individual mutant ERs in breast cancer cells. Effective inhibition derives from both nonpolar and moderately polar motifs in a multifunctional side chain of the antagonists, with the nature of the ligand core making important contributions by increasing the potency of ligands possessing similar types of side chains. Some of our new antagonists potently blocked the transcriptional activity of the three most common mutant ERs (L536R, Y537S, D538G) and inhibited mutant ER-mediated cell proliferation. Supported by our molecular modeling, these studies provide new insights into the role of specific components, involving both the ligand core and multifunctional side chain, in suppressing wild-type and mutant ER-mediated transcription and breast cancer cell proliferation.


Assuntos
Antagonistas de Estrogênios/farmacologia , Moduladores de Receptor Estrogênico/farmacologia , Receptor alfa de Estrogênio/antagonistas & inibidores , Fenóis/farmacologia , Sítios de Ligação , Proliferação de Células/efeitos dos fármacos , Regulação para Baixo , Estradiol/análogos & derivados , Estradiol/química , Antagonistas de Estrogênios/síntese química , Antagonistas de Estrogênios/química , Moduladores de Receptor Estrogênico/síntese química , Moduladores de Receptor Estrogênico/química , Receptor alfa de Estrogênio/genética , Humanos , Ligantes , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutação , Fenóis/síntese química , Fenóis/química
3.
ACS Med Chem Lett ; 9(8): 803-808, 2018 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-30128071

RESUMO

An effective endocrine therapy for breast cancer is to selectively and effectively degrade the estrogen receptor (ER). Up until now, there have been largely only two molecular scaffolds capable of doing this. In this study, we have developed new classes of scaffolds that possess selective estrogen receptor degrader (SERD) and ER antagonistic properties. These novel SERDs potently inhibit MCF-7 breast cancer cell proliferation and the expression of ER target genes, and their efficacy is comparable to Fulvestrant. Unlike Fulvestrant, the modular protein-targeted chimera (PROTAC)-type design of these novel SERDs should allow easy diversification into a library of analogs to further fine-tune their pharmacokinetic properties including oral availability. This work also expands the pool of currently available PROTAC-type scaffolds that could be beneficial for targeted degradation of various other therapeutically important proteins.

4.
ChemMedChem ; 13(20): 2208-2216, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30117269

RESUMO

The immune system uses members of the toll-like receptor (TLR) family to recognize a variety of pathogen- and host-derived molecules in order to initiate immune responses. Although TLR-mediated, pro-inflammatory immune responses are essential for host defense, prolonged and exaggerated activation can result in inflammation pathology that manifests in a variety of diseases. Therefore, small-molecule inhibitors of the TLR signaling pathway might have promise as anti-inflammatory drugs. We previously identified a class of triaryl pyrazole compounds that inhibit TLR signaling by modulation of the protein-protein interactions essential to the pathway. We have now systematically examined the structural features essential for inhibition of this pathway, revealing characteristics of compounds that inhibited all TLRs tested (pan-TLR signaling inhibitors) as well as compounds that selectively inhibited certain TLRs. These findings reveal interesting classes of compounds that could be optimized for particular inflammatory diseases governed by different TLRs.


Assuntos
Pirazóis/química , Pirazóis/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/metabolismo , Animais , Humanos , Camundongos , Estrutura Molecular , Células RAW 264.7 , Receptores de Estrogênio/metabolismo , Relação Estrutura-Atividade
5.
ACS Chem Biol ; 12(2): 494-503, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28032978

RESUMO

The estrogen receptors (ERs) bind with high affinity to many structurally diverse ligands by significantly distorting the contours of their ligand-binding pockets. This raises a question: To what degree is ER able to distinguish between structurally related regioisomers and enantiomers? We have explored the structural compliance and specificity of ERα with a set of ligands having a 7-oxa-bicyclo[2.2.1]hept-5-ene sulfonate core and basic side chains typical of selective ER modulators (SERMs). These ligands have two regioisomers, each of which is a racemate of enantiomers. Using orthogonal protecting groups and chiral HPLC, we isolated all 4 isomers and assigned their absolute stereochemistry by X-ray analysis. The 1S,2R,4S isomer has a 80-170-fold higher affinity for ERα than the others, and it profiles as a partial agonist/antagonist in cellular reporter gene assays and in suppressing proliferation of MCF-7 breast cancer cells with subnanomolar potency, far exceeding that of the other isomers. It is the only isomer found bound to ERα by X-ray analysis after crystallization with four-isomer mixtures of closely related analogs. Thus, despite the general compliance of this receptor for binding a large variety of ligand structures, ER demonstrates marked structural specificity and stereospecificity by selecting a single component from a mixture of structurally related isomers to drive ER-regulated cellular activity. Our findings lay the necessary groundwork for seeking unique ER-mediated pharmacological profiles by rational structural perturbations of two different types of side chains in this unprecedented class of ER ligands, which may prove useful in developing more effective endocrine therapies for breast cancer.


Assuntos
Receptores de Estrogênio/metabolismo , Cromatografia Líquida de Alta Pressão , Cristalografia por Raios X , Células Hep G2 , Humanos , Isomerismo , Ligantes , Células MCF-7 , Conformação Proteica , Receptores de Estrogênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA