Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 137(3): 527-539, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867666

RESUMO

Obstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs). IH increased the susceptibility of mice to develop AAA in response to Ang II infusion by facilitating the augmentation of the abdominal aorta's diameter as assessed by transabdominal ultrasound imaging. Importantly, IH with Ang II augmented aortic elastin degradation and the expression of matrix metalloproteinases (MMPs), mainly MMP8, MMP12, and a disintegrin and metalloproteinase-17 (ADAM17) as measured by histology and immunohistochemistry. Mechanistically, IH increased the activities of MMP2, MMP8, MMP9, MMP12, and ADAM17, while reducing the expression of the MMP regulator reversion-inducing cysteine-rich protein with Kazal motifs (RECK) in cultured SMCs. Aortic samples from human AAA were associated with decreased RECK and increased expression of ADAM17 and MMPs. These data suggest that IH facilitates AAA development when additional stressors are superimposed and that this occurs in association with an increased presence of aortic MMPs and ADAM17, potentially due to IH-induced modulation of RECK expression. These findings support a plausible synergistic link between OSA and AAA and provide a better understanding of the molecular mechanisms underlying the pathogenesis of AAA.NEW & NOTEWORTHY IH facilitates Ang II-induced abdominal aortic diameter expansion and AAA development in C57BL/6J male mice. IH upregulates the expression of specific MMPs such as MMP8, MMP12, and ADAM17. IH directly suppresses RECK expression and increases MMPs activity in SMCs. Human AAA tissues exhibit a downregulation of RECK and an upregulation of ADAM17 and MMPs.


Assuntos
Proteína ADAM17 , Angiotensina II , Aorta Abdominal , Aneurisma da Aorta Abdominal , Hipóxia , Camundongos Endogâmicos C57BL , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/patologia , Animais , Masculino , Hipóxia/metabolismo , Hipóxia/complicações , Camundongos , Proteína ADAM17/metabolismo , Aorta Abdominal/metabolismo , Aorta Abdominal/patologia , Miócitos de Músculo Liso/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Humanos , Metaloproteinases da Matriz/metabolismo , Metaloproteinase 12 da Matriz/metabolismo , Apneia Obstrutiva do Sono/metabolismo , Apneia Obstrutiva do Sono/fisiopatologia , Apneia Obstrutiva do Sono/complicações
2.
Am J Physiol Regul Integr Comp Physiol ; 324(1): R90-R101, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440901

RESUMO

Widespread consumption of diets high in fat and fructose (Western diet, WD) has led to increased prevalence of obesity and diastolic dysfunction (DD). DD is a prominent feature of heart failure with preserved ejection fraction (HFpEF). However, the underlying mechanisms of DD are poorly understood, and treatment options are still limited. We have previously shown that deletion of the cell-specific mineralocorticoid receptor in endothelial cells (ECMR) abrogates DD induced by WD feeding in female mice. However, the specific role of ECMR activation in the pathogenesis of DD in male mice has not been clarified. Therefore, we fed 4-wk-old ECMR knockout (ECMRKO) male mice and littermates (LM) with either a WD or chow diet (CD) for 16 wk. WD feeding resulted in DD characterized by increased left ventricle (LV) filling pressure (E/e') and diastolic stiffness [E/e'/LV inner diameter at end diastole (LVIDd)]. Compared with CD, WD in LM resulted in increased myocardial macrophage infiltration, oxidative stress, and increased myocardial phosphorylation of Akt, in concert with decreased phospholamban phosphorylation. WD also resulted in focal cardiomyocyte remodeling, characterized by areas of sarcomeric disorganization, loss of mitochondrial electron density, and mitochondrial fragmentation. Conversely, WD-induced DD and associated biochemical and structural abnormalities were prevented by ECMR deletion. In contrast with our previously reported observations in females, WD-fed male mice exhibited enhanced Akt signaling and a lower magnitude of cardiac injury. Collectively, our data support a critical role for ECMR in obesity-induced DD and suggest critical mechanistic differences in the genesis of DD between males and females.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Feminino , Masculino , Animais , Camundongos , Células Endoteliais/patologia , Insuficiência Cardíaca/complicações , Receptores de Mineralocorticoides/genética , Camundongos Obesos , Proteínas Proto-Oncogênicas c-akt , Volume Sistólico , Cardiomiopatias/etiologia , Cardiomiopatias/prevenção & controle , Dieta Ocidental , Obesidade/etiologia
3.
Am J Physiol Heart Circ Physiol ; 323(5): H879-H891, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36083795

RESUMO

Adropin is a peptide largely secreted by the liver and known to regulate energy homeostasis; however, it also exerts cardiovascular effects. Herein, we tested the hypothesis that low circulating levels of adropin in obesity and type 2 diabetes (T2D) contribute to arterial stiffening. In support of this hypothesis, we report that obesity and T2D are associated with reduced levels of adropin (in liver and plasma) and increased arterial stiffness in mice and humans. Establishing causation, we show that mesenteric arteries from adropin knockout mice are also stiffer, relative to arteries from wild-type counterparts, thus recapitulating the stiffening phenotype observed in T2D db/db mice. Given the above, we performed a set of follow-up experiments, in which we found that 1) exposure of endothelial cells or isolated mesenteric arteries from db/db mice to adropin reduces filamentous actin (F-actin) stress fibers and stiffness, 2) adropin-induced reduction of F-actin and stiffness in endothelial cells and db/db mesenteric arteries is abrogated by inhibition of nitric oxide (NO) synthase, and 3) stimulation of smooth muscle cells or db/db mesenteric arteries with a NO mimetic reduces stiffness. Lastly, we demonstrated that in vivo treatment of db/db mice with adropin for 4 wk reduces stiffness in mesenteric arteries. Collectively, these findings indicate that adropin can regulate arterial stiffness, likely via endothelium-derived NO, and thus support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.NEW & NOTEWORTHY Arterial stiffening, a characteristic feature of obesity and type 2 diabetes (T2D), contributes to the development and progression of cardiovascular diseases. Herein we establish that adropin is decreased in obese and T2D models and furthermore provide evidence that reduced adropin may directly contribute to arterial stiffening. Collectively, findings from this work support the notion that "hypoadropinemia" should be considered as a putative target for the prevention and treatment of arterial stiffening in obesity and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Rigidez Vascular , Actinas , Animais , Células Endoteliais , Humanos , Artérias Mesentéricas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico , Óxido Nítrico Sintase , Obesidade/complicações , Peptídeos/farmacologia , Rigidez Vascular/fisiologia
4.
Clin Sci (Lond) ; 134(12): 1555-1572, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32490531

RESUMO

Abdominal aortic aneurysm (AAA) is a localized pathological dilation of the aorta exceeding the normal diameter (∼20 mm) by more than 50% of its original size (≥30 mm), accounting for approximately 150000-200000 deaths worldwide per year. We previously reported that Notch inhibition does not decrease the size of pre-established AAA at late stage of the disease. Here, we examined whether a potent pharmacologic inhibitor of Notch signaling (DAPT (N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester)), regresses an actively growing AAA. In a mouse model of an aneurysm (Apoe-/- mice; n=44); DAPT (n=17) or vehicle (n=17) was randomly administered at day 14 of angiotensin II (AngII; 1 µg/min/kg), three times a week and mice were killed on day 42. Progressive increase in aortic stiffness and maximal intraluminal diameter (MILD) was observed in the AngII + vehicle group, which was significantly prevented by DAPT (P<0.01). The regression of aneurysm with DAPT was associated with reduced F4/80+Cd68+ (cluster of differentiation 68) inflammatory macrophages. DAPT improved structural integrity of aorta by reducing collagen fibrils abnormality and restoring their diameter. Mechanistically, C-C chemokine receptor type 7 (Ccr7)+F4/80- dendritic cells (DCs), implicated in the regression of aneurysm, were increased in the aorta of DAPT-treated mice. In the macrophages stimulated with AngII or lipopolysaccharide (LPS), DAPT reverted the expression of pro-inflammatory genes Il6 and Il12 back to baseline within 6 h compared with vehicle (P<0.05). DAPT also significantly increased the expression of anti-inflammatory genes, including c-Myc, Egr2, and Arg1 at 12-24 h in the LPS-stimulated macrophages (P<0.05). Overall, these regressive effects of Notch signaling inhibitor emphasize its therapeutic implications to prevent the progression of active AAAs.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Dipeptídeos/uso terapêutico , Receptores Notch/antagonistas & inibidores , Transdução de Sinais , Animais , Aorta/metabolismo , Aorta/patologia , Aneurisma da Aorta Abdominal/patologia , Apoptose , Citocinas/metabolismo , Células Dendríticas/metabolismo , Dipeptídeos/farmacologia , Progressão da Doença , Matriz Extracelular/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Fenótipo , Receptores Notch/metabolismo
5.
Acta Biomater ; 110: 129-140, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32339711

RESUMO

Vascular diseases like abdominal aortic aneurysms (AAA) are characterized by a drastic remodeling of the vessel wall, accompanied with changes in the elastin and collagen content. At the macromolecular level, the elastin fibers in AAA have been reported to undergo significant structural alterations. While the undulations (waviness) of the collagen fibers is also reduced in AAA, very little is understood about changes in the collagen fibril at the sub-fiber level in AAA as well as in other vascular pathologies. In this study we investigated structural changes in collagen fibrils in human AAA tissue extracted at the time of vascular surgery and in aorta extracted from angiotensin II (AngII) infused ApoE-/- mouse model of AAA. Collagen fibril structure was examined using transmission electron microscopy and atomic force microscopy. Images were analyzed to ascertain length and depth of D-periodicity, fibril diameter and fibril curvature. Abnormal collagen fibrils with compromised D-periodic banding were observed in the excised human tissue and in remodeled regions of AAA in AngII infused mice. These abnormal fibrils were characterized by statistically significant reduction in depths of D-periods and an increased curvature of collagen fibrils. These features were more pronounced in human AAA as compared to murine samples. Thoracic aorta from Ang II-infused mice, abdominal aorta from saline-infused mice, and abdominal aorta from non-AAA human controls did not contain abnormal collagen fibrils. The structural alterations in abnormal collagen fibrils appear similar to those reported for collagen fibrils subjected to mechanical overload or chronic inflammation in other tissues. Detection of abnormal collagen could be utilized to better understand the functional properties of the underlying extracellular matrix in vascular as well as other pathologies. STATEMENT OF SIGNIFICANCE: Several vascular diseases including abdominal aortic aneurysm (AAA) are characterized by extensive remodeling in the vessel wall. Although structural alterations in elastin fibers are well characterized in vascular diseases, very little is known about the collagen fibril structure in these diseases. We report here a comprehensive ultrastructural evaluation of the collagen fibrils in AAA, using high-resolution microscopy techniques like transmission electron microscopy (TEM) and atomic force microscopy (AFM). We elucidate how abnormal collagen fibrils with compromised D-periodicity and increased fibril curvature are present in the vascular tissue in both clinical AAA as well as in murine models. We discuss how these abnormal collagen fibrils are likely a consequence of mechanical overload accompanying AAA and could impact the functional properties of the underlying tissue.


Assuntos
Aneurisma da Aorta Abdominal , Angiotensina II , Animais , Aorta Abdominal , Colágeno , Modelos Animais de Doenças , Matriz Extracelular , Humanos , Camundongos , Camundongos Knockout
6.
Sci Rep ; 9(1): 13458, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530833

RESUMO

Abdominal aortic aneurysm (AAA) is characterized by transmural infiltration of myeloid cells at the vascular injury site. Previously, we reported preventive effects of Notch deficiency on the development of AAA by reduction of infiltrating myeloid cells. In this study, we examined if Notch inhibition attenuates the progression of pre-established AAA and potential implications. Pharmacological Notch inhibitor (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-(S)-phenylglycine t-butyl ester; DAPT) was administered subcutaneously three times a week starting at day 28 of angiotensin II (AngII) infusion. Progressive increase in pulse wave velocity (PWV), maximal intra-luminal diameter (MILD) and maximal external aortic diameter (MEAD) were observed at day 56 of the AngII. DAPT prevented such increase in MILD, PWV and MEAD (P < 0.01). Histologically, the aortae of DAPT-treated Apoe-/- mice had significant reduction in inflammatory response and elastin fragmentation. Naked collagen microfibrils and weaker banded structure observed in the aortae of Apoe-/- mice in response to AngII, were substantially diminished by DAPT. A significant decrease in the proteolytic activity in the aneurysmal tissues and vascular smooth muscle cells (vSMCs) was observed with DAPT (P < 0.01). In human and mouse AAA tissues, increased immunoreactivity of activated Notch signaling correlated strongly with CD38 expression (R2 = 0.61). Collectively, we propose inhibition of Notch signaling as a potential therapeutic target for AAA progression.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Dipeptídeos/farmacologia , Receptores Notch/metabolismo , ADP-Ribosil Ciclase 1/metabolismo , Angiotensina II/efeitos adversos , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aneurisma da Aorta Abdominal/induzido quimicamente , Aneurisma da Aorta Abdominal/diagnóstico por imagem , Aneurisma da Aorta Abdominal/metabolismo , Células Cultivadas , Colágeno/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Receptores Notch/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
7.
Sci Rep ; 9(1): 7999, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31142802

RESUMO

Naïve macrophages (Mφ) polarize in response to various environmental cues to a spectrum of cells that have distinct biological functions. The extreme ends of the spectrum are classified as M1 and M2 macrophages. Previously, we demonstrated that Notch1 deficiency promotes Tgf-ß2 dependent M2-polarization in a mouse model of abdominal aortic aneurysm. The present studies aimed to characterize the unique set of genes regulated by Notch1 signaling in macrophage polarization. Bone marrow derived macrophages isolated from WT or Notch1+/- mice (n = 12) were differentiated to Mφ, M1 or M2-phenotypes by 24 h exposure to vehicle, LPS/IFN-γ or IL4/IL13 respectively and total RNA was subjected to RNA-Sequencing (n = 3). Bioinformatics analyses demonstrated that Notch1 haploinsufficiency downregulated the expression of 262 genes at baseline level, 307 genes with LPS/IFN-γ and 254 genes with IL4/IL13 treatment. Among these, the most unique genes downregulated by Notch1 haploinsufficiency included fibromodulin (Fmod), caspase-4, Has1, Col1a1, Alpl and Igf. Pathway analysis demonstrated that extracellular matrix, macrophage polarization and osteogenesis were the major pathways affected by Notch1 haploinsufficiency. Gain and loss-of-function studies established a strong correlation between Notch1 haploinsufficiency and Fmod in regulating Tgf-ß signaling. Collectively, our studies suggest that Notch1 haploinsufficiency increases M2 polarization through these newly identified genes.


Assuntos
Polaridade Celular/genética , Ativação de Macrófagos/genética , Macrófagos/metabolismo , Receptor Notch1/genética , Transcriptoma/genética , Animais , Aneurisma da Aorta Abdominal/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Diferenciação Celular/efeitos dos fármacos , Biologia Computacional , Modelos Animais de Doenças , Fibromodulina/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Interferon gama/farmacologia , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/farmacologia , Macrófagos/patologia , Camundongos , Transdução de Sinais/efeitos dos fármacos
8.
Arterioscler Thromb Vasc Biol ; 39(2): 212-223, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30580570

RESUMO

Objective- Abdominal aortic aneurysm is caused by the accumulation of inflammatory cells in the aortic wall. Our recent studies demonstrated that inhibition of Notch signaling attenuates abdominal aortic aneurysm formation by shifting the macrophage balance towards anti-inflammatory (M2) phenotype. Using IL12p40-/- (interleukin 12 p40) mice, we investigated the effects of M2-predominant macrophages on the development of abdominal aortic aneurysm. Approach and Results- Male (8-10 week-old) wild-type and IL12p40-/- mice (n=15) on C57BL/6 background were infused with Ang II (angiotensin II, 1000 ng/kg per minute) by implanting osmotic pumps subcutaneously for 28 days. In the IL12p40-/- mice, Ang II significantly increased the maximal intraluminal diameter (9/15) as determined by transabdominal ultrasound imaging. In addition, IL12p40-deletion significantly increased aortic stiffness in response to Ang II as measured by pulse wave velocity and atomic force microscopy. Histologically, IL12p40-/- mice exhibited increased maximal external diameter of aorta and aortic lesions associated with collagen deposition and increased elastin fragmentation compared with wild-type mice infused with Ang II. Mechanistically, IL12p40 deficiency by siRNA (small interfering RNA) augmented the Tgfß2-mediated Mmp2 expression in wild-type bone marrow-derived macrophages without affecting the expression of Mmp9. No such effects of IL12p40 deficiency on MMP2/MMP9 was observed in human aortic smooth muscle cells or fibroblasts. Depletion of macrophages in IL12p40-/- mice by clodronate liposomes significantly decreased the maximal external diameter of aorta and aortic stiffness in response to Ang II as determined by imaging and atomic force microscopy. Conclusions- IL12p40 depletion promotes the development of abdominal aortic aneurysm, in part, by facilitating recruitment of M2-like macrophages and potentiating aortic stiffness and fibrosis mediated by Tgfß2.


Assuntos
Angiotensina II/farmacologia , Aneurisma da Aorta Abdominal/induzido quimicamente , Subunidade p40 da Interleucina-12/fisiologia , Animais , Colágeno/metabolismo , Subunidade p40 da Interleucina-12/deficiência , Macrófagos/fisiologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Transformador beta2/fisiologia , Rigidez Vascular
9.
J Immunol ; 199(8): 2865-2872, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893955

RESUMO

NK group 2 member D (NKG2D) is a strong NK cell-activating receptor, with engagement by ligands triggering granule release and cytokine production. The function of NKG2D signaling in NK cells has largely been studied in the context of engagement of the receptor by ligands expressed on the surface of target cells. We report that upon activation with IL-12, IL-15, and IL-18 human NK cells express NKG2D ligands of the UL16 binding protein family on the cell surface. NKG2D-ligand interaction between cytokine-stimulated NK cells increases the activity of the metalloprotease TNF-α-converting enzyme. This enhanced TNF-α-converting enzyme activity significantly increases the release of TNF-α and UL16 binding protein from the surface of the NK cells. These results demonstrate that NKG2D signaling is critical for maximal TNF-α release by NK cells. Further, they demonstrate a role for NKG2D-ligand interaction via homotypic NK cell contact in NK cell effector function.


Assuntos
Proteína ADAM17/metabolismo , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína ADAM17/genética , Comunicação Celular , Células Cultivadas , Citotoxicidade Imunológica , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Imunidade Inata , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Interleucina-12/imunologia , Interleucina-15/imunologia , Interleucina-18/imunologia , Ativação Linfocitária , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
10.
PLoS One ; 11(7): e0159740, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27448164

RESUMO

Pullulanase, an enzyme that catalyzes the hydrolysis of polysaccharides, has been identified in a broad range of organisms, including bacteria, yeasts, fungi, and animals. The pullulanase (pulB; FTT_0412c) of F. tularensis subspecies tularensis Schu S4 is considered to be a homologue of the type I pullulanase (pulA) of the other Francisella subspecies. The significance of Francisella pullulanase has been obscure until now. In the present study, we characterized a recombinant PulB of F. tularensis SCHU P9, which was expressed as a his-tagged protein in Escherichia coli. The recombinant PulB was confirmed to be a type I pullulanase by its enzymatic activity in vitro. A pulB gene knockout mutant of F. tularensis SCHU P9 (ΔpulB) was constructed using the TargeTron Knockout system and plasmid pKEK1140 to clarify the function of PulB during the growth of F. tularensis in macrophages. The intracellular growth of the ΔpulB mutant in murine macrophage J774.1 cells was significantly reduced compared with that of the parental strain SCHU P9. Expression of PulB in ΔpulB, using an expression plasmid, resulted in the complementation of the reduced growth in macrophages, suggesting that PulB is necessary for the efficient growth of F. tularensis in macrophages. To assess the role of PulB in virulence, the knockout and parent bacterial strains were used to infect C57BL/6J mice. Histopathological analyses showed that tissues from ΔpulB-infected mice showed milder lesions compared to those from SCHU P9-infected mice. However, all mice infected with SCHU P9 and ΔpulB showed the similar levels of bacterial loads in their tissues. The results suggest that PulB plays a significant role in bacterial growth within murine macrophage but does not contribute to bacterial virulence in vivo.


Assuntos
Francisella tularensis/enzimologia , Francisella tularensis/crescimento & desenvolvimento , Glicosídeo Hidrolases/metabolismo , Tularemia/microbiologia , Animais , Modelos Animais de Doenças , Ativação Enzimática , Feminino , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Camundongos , Mutação , Temperatura , Tularemia/imunologia , Tularemia/metabolismo , Tularemia/patologia , Virulência
11.
PLoS One ; 9(2): e89075, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558472

RESUMO

Francisella tularensis subspecies tularensis, the etiological agent of tularemia, is highly pathogenic to humans and animals. However, the SCHU strain of F. tularensis SCHU P0 maintained by passaging in artificial media has been found to be attenuated. To better understand the molecular mechanisms behind the pathogenicity of F. tularensis SCHU, we attempted to isolate virulent bacteria by serial passages in mice. SCHU P5 obtained after 5th passages in mice remained avirulent, while SCHU P9 obtained after 9th passages was completely virulent in mice. Moreover, SCHU P9 grew more efficiently in J774.1 murine macrophages compared with that in the less pathogenic SCHU P0 and P5. Comparison of the nucleotide sequences of the whole genomes of SCHU P0, P5, and P9 revealed only 1 nucleotide difference among P0, P5 and P9 in 1 of the 2 copies of pathogenicity determinant protein C (pdpC) gene. An adenine residue deletion was observed in the pdpC1 gene of SCHU P0, P5, and P9 and in the pdpC2 gene of SCHU P0, and P5, while P9 was characterized by the wild type pdpC2 gene. Thus, SCHU P0 and P5 expressed only truncated forms of PdpC protein, while SCHU P9 expressed both wild type and truncated versions. To validate the pathogenicity of PdpC, both copies of the pdpC gene in SCHU P9 have been inactivated by Targetron mutagenesis. SCHU P9 mutants with inactivated pdpC gene showed low intracellular growth in J774.1 cells and did not induce severe disease in experimentally infected mice, while virulence of the mutants was restored by complementation with expression of the intact PdpC. These results demonstrate that PdpC is crucial in determining the virulence of F. tularensis SCHU.


Assuntos
Proteínas de Bactérias/metabolismo , Francisella tularensis/genética , Francisella tularensis/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Sequência de Bases , Western Blotting , Francisella tularensis/crescimento & desenvolvimento , Inativação Gênica , Macrófagos/microbiologia , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Análise de Sequência de DNA , Inoculações Seriadas , Especificidade da Espécie , Virulência , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA