Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chirality ; 36(3)2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448043

RESUMO

Synthetic therapeutic peptides are a complex and popular class of pharmaceuticals. In recent years, peptides with proven therapeutic activity have gained significant interest in the market. The determination of synthetic peptide enantiomeric purity plays a critical role in the evaluation of the quality of the medicine. Since racemization is one of the most common side reactions occurring in AAs or peptides, enantiomeric impurities such as D-isomers can form during the peptide synthesis or can be introduced from the starting materials (e.g., AAs). The therapeutic effect of a synthetic or semi-synthetic bioactive peptide molecule depends on its AA enantiomeric purity and secondary/tertiary structure. Therefore, the enantiomeric purity determination for synthetic peptides is supportive for interpreting unwanted therapeutic effects and determining the quality of synthetic peptide therapeutics. However, enantiomeric purity analysis encounters formidable analytical challenges during chromatographic separation, as D/L isomers have identical physical-chemical properties except stereochemical configuration. To ensure peptides AA stereochemical configuration whether in the free or bound state, sensitive and reproducible quantitative analytical method is mandatory. In this regard, numerous analytical techniques were emerged for the quantification of D-isomeric impurities in synthetic peptides, but still, very few reports are available in the literature. Thus, the purpose of this paper is to provide an overview of the importance, regulatory requirements, and various analytical methods used for peptide enantiomeric purity determination. In addition, we discussed the available literature in terms of enantiomeric impurity detection, common hydrolysis procedural aspects, and different analytical strategies used for sample preparation.


Assuntos
Peptídeos , Estereoisomerismo , Isomerismo , Hidrólise
2.
J Pharm Biomed Anal ; 242: 116024, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387126

RESUMO

Importance of cleaning validation in the pharmaceutical industry cannot be overstated. It is essential for preventing cross-contamination, ensuring product quality & safety, and upholding regulatory standards. The present study involved development of an effective cleaning method for five selected kinase inhibitors binimetinib (BMT), selumetinib (SMT), brigatinib (BGT), capmatinib (CPT), and baricitinib (BRT). For checking the effectiveness of the developed cleaning technique, a sensitive and specific RP-HPLC based analytical method employing a diode array detector has been established to quantitate drug residue on glass and stainless steel surfaces. A reproducible swab sampling protocol utilizing TX714A Alpha swabs wetted with an extracting solvent has been developed to collect representative samples from both surfaces. Chromatographic separation of selected kinase inhibitors was achieved in gradient mode using an Agilent Zorbax eclipsed C18 column with acetonitrile and 10 mM ammonium formate as the mobile phase. The analytes were chromatographically separated in a 12 min run time. The mean swab recovery for each drug from glass and stainless steel surfaces exceeded 90%. Cleaning with IPA (70%) and acetone (70%) effectively removed residues for all five drugs. A solution comprising 10 mM SDS with 20% IPA demonstrated good efficacy in cleaning residues of BGT, BRT, and CPT, but exhibited lower efficacy for SMT and BMT.


Assuntos
Indústria Farmacêutica , Aço Inoxidável , Cromatografia Líquida de Alta Pressão/métodos , Solventes , Acetona
3.
Rapid Commun Mass Spectrom ; 38(5): e9696, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355880

RESUMO

RATIONALE: Enasidenib (EDB) is an orally active selective mutant isocitrate dehydrogenase-2 enzyme inhibitor approved by the U.S. Food and Drug Administration to treat acute myeloid leukemia. It lacks a reported forced degradation study and a stability-indicating assay method (SIAM). This study addresses this gap by establishing a degradation profile in accordance with the International Council for Harmonisation Q1A and Q1B (R2) guidelines and developing a validated SIAM for EDB. METHODS: EDB was exposed to forced degradation under various conditions (hydrolytic, photolytic, oxidative, and thermal stress). Degradation samples were analyzed using high-performance liquid chromatography on an Agilent ZORBAX Eclipse Plus C18 column with a mobile phase consisting of 0.1% formic acid in Milli-Q water and acetonitrile at a flow rate of 1 mL/min and detection at 270 nm. Liquid chromatography-quadrupole time-of-flight-high-resolution mass spectrometry (LC/Q-TOF HRMS) was used for the identification and characterization of degradation products. Nitrosamine risk assessment was conducted using a modified nitrosation assay procedure (NAP) test due to the presence of a secondary amine group in the drug, which is liable to forming nitrosamine drug substance-related impurities (NDSRI). RESULTS: The drug exhibited significant degradation under acidic, basic, photolytic, and oxidative conditions in the solution state. A total of nine degradation products (DP) were formed (DP-I, DP-III, and DP-IV: acidic conditions; DP-I and DP-III: basic conditions; DP-II, DP-V, DP-VI, and DP-VII: oxidative stress; and DP-VII, DP-VIII, and DP-IX: photolytic conditions), which were separated and identified using reversed-phase high-performance liquid chromatography and characterized using liquid chromatography-tandem mass spectrometry. The mechanism behind the formation of EDB degradation products has been discussed, and this study was the first to develop a degradation pathway for EDB. In addition, the possibilities of NDSRI formation for EDB were studied using a modified NAP test, which can contribute to the risk assessment of the drug. CONCLUSIONS: Forced degradation studies were conducted by establishing a SIAM for EDB. All the degradation products were characterized by mass spectral data obtained using LC/Q-TOF-HRMS.


Assuntos
Aminopiridinas , Nitrosaminas , Espectrometria de Massas por Ionização por Electrospray , Triazinas , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Hidrólise , Oxirredução , Fotólise
4.
Rapid Commun Mass Spectrom ; 38(7): e9713, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38361473

RESUMO

RATIONALE: Disulfide bridges (DSB) play an important role in stabilizing three-dimensional structures of biopharmaceuticals, single purified proteins, and various cyclic peptide drugs that contain disulfide in their structures. Incorrect cross-linking known as DSB scrambling results in misfolded structures that can be inactive, immunogenic, and susceptible to aggregation. Very few articles have been published on the experimental annotation of DSBs in proteins and cyclic peptide drugs. Accurate characterization of the disulfide bond is essential for understanding protein confirmation. METHODS: Characterizing DSBs using mass spectrometry (MS) involves the chemical and enzymatic digestion of samples to obtain smaller peptide fragments, in both reduced and nonreduced forms. Subsequently, these samples are analyzed using MS to locate the DSB, either through interpretation or by employing various software tools. RESULTS: The main challenge in DSB analysis methods using sample preparation is to obtain a sample solution in which nonnative DSBs are not formed due to high pH, temperature, and presence of free sulfhydryl groups. Formation of nonnative DSBs can lead to erroneous annotation of disulfide bond. Sample preparation techniques, fragmentation methods for DSB analysis, and contemporary approaches for DSB mapping using this fragmentation were discussed. CONCLUSIONS: This review presents the latest advancement in MS-based characterization; also a critical perspective is presented for further annotation of DSBs using MS, primarily for single purified proteins or peptides that are densely connected and rich in cysteine. Despite significant breakthroughs resulting from advancements in MS, the analysis of disulfide bonds is not straightforward; it necessitates expertise in sample preparation and interpretation.


Assuntos
Peptídeos , Proteínas , Espectrometria de Massas , Proteínas/química , Peptídeos/análise , Peptídeos Cíclicos , Dissulfetos/química
5.
Biomed Chromatogr ; 38(3): e5813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148302

RESUMO

The US Food and Drug Administration and the European Medicines Agency approved alpelisib in 2019 for the treatment of metastatic breast cancer. A thorough literature review revealed that a stability-indicating analytical method (SIAM) is not available for the quantification of alpelisib and its degradation products (DPs). In this study, per the comprehensive stress study recommended by the International Council for Harmonisation (ICH), alpelisib was exposed to hydrolysis, oxidation, photolysis, and thermal stress. Degradation of the drug was observed under hydrolysis, oxidative, and photolysis conditions, whereas the drug was stable under thermal stress condition. We developed a SIAM for the separation of alpelisib and its major DPs that were formed under different stress conditions. The validation of the developed method was performed per ICH Q2(R1) guidelines. Five DPs were identified and characterized. Structure elucidation of all DPs was performed with the modern characterization tool of liquid chromatography-quadrupole time-of-flight mass spectrometer (LC-Q-TOF-MS/MS). The degradation pathway of the drug and its mechanisms were outlined, and in silico toxicity prediction was performed using the ProTox-II tool.


Assuntos
Espectrometria de Massas em Tandem , Tiazóis , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Estabilidade de Medicamentos , Cromatografia Líquida/métodos , Hidrólise , Oxirredução , Fotólise
6.
Food Chem ; 421: 136130, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37116444

RESUMO

The study aims to enhance the functional properties of soybean meal (SBM) using potent proteolytic Bacillus strains isolated from kinema, a traditional fermented soybean product of Sikkim Himalaya. Selected Bacillus species; Bacillus licheniformis KN1G, B. amyloliquifaciens KN2G, B. subtilis KN36D, B. subtilis KN2B, and B. subtilis KN36D were employed for solid state fermentation (SSF) of SBM samples. The water and methanol extracts of SBM hydrolysates presented a significant increase in antioxidant activity. The water-soluble extracts of B. subtilis KN2B fermented SBM exhibited the best DPPH radical scavenging activity of 2.30 mg/mL. In contrast, the methanol-soluble extract of B. licheniformis KN1G fermented SBM showed scavenging activity of 0.51 mg/mL. Proteomic analysis of fermented soybean meal revealed several common and unique peptides produced by applying different starter cultures. Unique antioxidant peptides (HFDSEVVFF and VVDMNEGALFLPH) were identified from FSBM via LC/MS. B. subtilis KN36D showed the highest diversity of peptides produced during fermentation. The results indicate the importance of specific strains for fermentation to upgrade the nutritional value of raw fermented biomass.


Assuntos
Bacillus , Alimentos Fermentados , Metanol , Proteômica , Glycine max/química , Peptídeos , Peptídeo Hidrolases , Fermentação , Extratos Vegetais
7.
J Sep Sci ; 45(13): 2200-2216, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35460196

RESUMO

As per the United States Food and Drug Administration, any polymer/chain composed of 40 or fewer amino acids is called a peptide, where more than 40 amino acids are considered proteins. On many occasions, there is a change in the source of manufacturing of the peptide active pharmaceutical ingredient, where one has to prove the sameness of that product with the existing formulation by considering several aspects like the presence of impurities/degradation products, the extent of aggregations, and so forth. For the same, several chromatographic characterization techniques such as reversed-phase high-performance liquid chromatography-ultraviolet/high-resolution mass spectrometry, supercritical fluid chromatography, size-exclusion chromatography, ion-exchange chromatography, and so forth, are widely used in the pharmaceutical industry. It is well known that the method development of peptide molecules is often challenging as many variables are to be kept in mind which can affect the separation, recovery, and stability of the molecule. The present review focuses on the basics of peptide degradation and method development by using various chromatographic techniques for characterization. It also covers a deep insight of method development parameters and variables to be considered which might directly or indirectly affect the chromatographic separation and recovery and also provides a guide on the selection of chromatographic parameters.


Assuntos
Cromatografia com Fluido Supercrítico , Peptídeos , Aminoácidos , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia com Fluido Supercrítico/métodos , Espectrometria de Massas/métodos , Preparações Farmacêuticas/análise
8.
RSC Adv ; 10(73): 44824-44833, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36381542

RESUMO

This work describes the suitability of a polyethylene styrene-DVB based interpolymer cation exchange membrane for use in a highly alkaline redox flow battery (RFB) with a [Fe(TEA)OH]2-/[Fe(TEA)OH]- and Fe(CN)6 3-/Fe(CN)6 4- redox couple. The alkaline stability of the membrane for 1440 h was evaluated in 5 N NaOH containing a 200 mM Fe(CN)6 3-/Fe(CN)6 4- redox couple. It was assessed according to the changes in the electrochemical and physicochemical properties. The performance of the membrane was evaluated over 40 charge-discharge cycles at a current density of 5 mA cm-2 current in a designed RFB cell. The obtained average coulombic efficiency (CE) was 92%, energy efficiency (EE) was 75%, voltage efficiency (VE) was 82% and volumetric efficiency was 34%. Under identical experimental conditions, the values of CE, EE, and VE for Nafion®-112 were 99%, 75%, and 76%, respectively. These results indicate the suitability of the polyethylene styrene-DVB based interpolymer cation exchange membrane for use in an alkaline RFB.

9.
J Cytol ; 35(2): 105-109, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29643658

RESUMO

BACKGROUND: This study was planned to compare and evaluate the staining efficacy of Leishman-Giemsa cocktail (LG), Papanicolaou, and Giemsa stain (G) in potentially malignant disorders and malignant lesions. AIMS: To evaluate the quality of nuclear and cytoplasmic staining of LG with G, and rapid Papanicolaou stain (Pap) and to compare the total staining efficiency of LG against G and P. MATERIALS AND METHODS: One hundred and eighty participants were studied under three groups - 60 as healthy controls, 60 with potentially malignant disorders, and 60 with malignant lesions; smears were taken thrice from the buccal mucosa. One smear was fixed with Bio-Fix spray and other two smears were allowed to air dry for 2-3 minutes. Then, the ethyl alcohol-fixed smear was stained with Pap and the two other air-dried smears were stained with G and LG stains. Analysis was done using Friedman test and Wilcoxon Signed Rank Test with SPSS Version 15.0. RESULTS: In the normal group, staining of LG was highly significant (P < 0.001). Among potentially malignant lesions, LG was observed to be highly significant (P < 0.001) when compared with G and was not significant when compared with Pap (P = 0.186). In the malignant group, LG was highly significant (P < 0.001). LG was superior with the highest average staining score of (2.018) than Pap and G. CONCLUSION: LG cocktail is a better stain with excellent cytoplasmic and nuclear staining intensity compared to Pap and G stains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA