Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Vaccines (Basel) ; 12(6)2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932309

RESUMO

During the multi-dose formulation development of recombinant vaccine candidates, protein antigens can be destabilized by antimicrobial preservatives (APs). The degradation mechanisms are often poorly understood since available analytical tools are limited due to low protein concentrations and the presence of adjuvants. In this work, we evaluate different analytical approaches to monitor the structural integrity of HPV16 VLPs adsorbed to Alhydrogel™ (AH) in the presence and absence of APs (i.e., destabilizing m-cresol, MC, or non-destabilizing chlorobutanol, CB) under accelerated conditions (pH 7.4, 50 °C). First, in vitro potency losses displayed only modest correlations with the results from two commonly used methods of protein analysis (SDS-PAGE, DSC). Next, results from two alternative analytical approaches provided a better understanding of physicochemical events occurring under these same conditions: (1) competitive ELISA immunoassays with a panel of mAbs against conformational and linear epitopes on HPV16 VLPs and (2) LC-MS peptide mapping to evaluate the accessibility/redox state of the 12 cysteine residues within each L1 protein comprising the HPV16 VLP (i.e., with 360 L1 proteins per VLP, there are 4320 Cys residues per VLP). These methods expand the limited analytical toolset currently available to characterize AH-adsorbed antigens and provide additional insights into the molecular mechanism(s) of AP-induced destabilization of vaccine antigens.

2.
Plant Methods ; 19(1): 114, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891607

RESUMO

Rubus species holds promise as a valuable source of polyphenols and bioactive compounds, offering significant potential as functional food ingredients with both nutraceutical and pharmaceutical benefits. However, many edible species within this genus remain under-explored and their importance is largely unrecognized. This review aims to provide an overview of the nutritional and bioactive components of both explored and under-explored Rubus species, highlighting their potential health advantages, value addition, and recent advancements. The economic exploitation of Rubus is currently limited to a few cultivated species, while numerous non-conventional and wild edible species are overlooked. Recognizing the economic and nutritional significance of exploited Rubus species, it is imperative to explore the untapped potential of these underutilized plants. By doing so, these species can be preserved from endangerment and contribute to nutritional and livelihood security for communities having access to them. This review emphasizes the importance of understanding the exceptional characteristics of Rubus species as "superfoods" and encourages the promotion and cultivation of these unexplored species. By expanding the cultivation and utilization of under-explored Rubus species, we can unlock their full potential and support sustainable nutritional and economic benefits.

3.
J Food Sci Technol ; 60(11): 2748-2760, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37711577

RESUMO

Barnyard millet (Echinochloa species) has received appreciable attention for its susceptibility to biotic and abiotic stresses, multiple harvests in a year and rich in micronutrients, fibers and phytochemicals. It is believed that the consumption of barnyard millet can possess various health benefits against diabetes, cardiovascular diseases, obesity, skin problems, cancer and celiac disease. The flour of barnyard millet is gluten-free and can be incorporated into the diet of celiac and diabetic patients. Considering the nutritional value of millet, various millet-based food products like bread, snack, baby foods, millet wine, porridge, fast foods and millet nutrition powder can be prepared. Future research and developments on barnyard millet and its products may help cope with various diseases known to humans. This paper discusses barnyard millet's nutritional and health benefits as whole grain and its value-added products. The paper also provides insights into the processing of barnyard millet and its effect on the functional properties and, future uses of barnyard millet in the field food industry as ready-to-cook and ready-to-eat products as well as in industrial uses, acting as a potential future crop contributing to food and nutritional security.

4.
Crit Rev Food Sci Nutr ; 63(26): 8403-8427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35333666

RESUMO

Beta vulgaris, also known as Beetroot, is a member of a family of Chenopodiaceae and is widely used as a natural food colorant. It gets its distinctive color due to nitrogen-containing water-soluble pigments betalains. Beetroot is an exquisite cradle of nutrients, including proteins, sucrose, carbohydrates, vitamins (B complex and vitamin C), minerals, fiber. They also contain an appreciable amount of phenolic compounds and antioxidants such as coumarins, carotenoids, sesquiterpenoids, triterpenes, flavonoids (astragalin, tiliroside, rhamnocitrin, kaempferol, rhamnetin). Recent studies evidenced that beetroot consumption had favorable physiological benefits, leading to improved cardiovascular diseases, hypertension, diabetes, cancer, hepatic steatosis, liver damage, etc. This review gives insights into developing beetroot as a potential and novel ingredient for versatile food applications and the latest research conducted worldwide. The phytochemical diversity of beetroot makes them potential sources of nutraceutical compounds from which functional foods can be obtained. The article aimed to comprehensively collate some of the vital information published on beetroot incurred in the agri-food sector and a comprehensive review detailing the potentiality of tapping bioactive compounds in the entire agriculture-based food sector.


Assuntos
Antioxidantes , Beta vulgaris , Antioxidantes/química , Ácido Ascórbico , Beta vulgaris/química , Betalaínas/metabolismo , Verduras , Vitaminas , Humanos
5.
Crit Rev Food Sci Nutr ; 63(28): 9580-9604, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35468008

RESUMO

Kaempferol and its derivatives are naturally occurring phytochemicals with promising bioactivities. This flavonol can reduce the lipid oxidation in the human body, prevent the organs and cell structure from deterioration and protect their functional integrity. This review has extensively highlighted the antioxidant, antimicrobial, anticancer, neuroprotective, and hepatoprotective activity of kaempferol. However, poor water solubility and low bioavailability of kaempferol greatly limit its applications. The utilization of advanced delivery systems can improve its stability, efficacy, and bioavailability. This is the first review that aimed to comprehensively collate some of the vital information published on biosynthesis, mechanism of action, bioactivities, bioavailability, and toxicological potential of kaempferol. Besides, it provides insights into the future direction on the improvement of bioavailability of kaempferol for wide applications.


Assuntos
Flavonoides , Quempferóis , Humanos , Flavonoides/farmacologia , Flavonoides/química , Quempferóis/farmacologia , Flavonóis , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Disponibilidade Biológica
6.
J Pharm Sci ; 112(2): 458-470, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462710

RESUMO

This work describes Part 2 of multi-dose formulation development of a Human Papillomavirus (HPV) Virus-Like Particle (VLP) based vaccine (see Part 1 in companion paper). Storage stability studies with candidate multi-dose formulations containing individual or combinations of seven different antimicrobial preservatives (APs) were performed with quadrivalent HPV VLP (6, 11, 16, 18) antigens adsorbed to aluminum-salt adjuvant (Alhydrogel®). Real-time (up to two years, 2-8°C) and accelerated (months at 25 and 40°C) stability studies identified eight lead candidates as measured by antigen stability (competitive ELISA employing conformational serotype-specific mAbs), antimicrobial effectiveness (modified European Pharmacopeia assay), total protein content (SDS-PAGE), and AP concentration (RP-UHPLC). The AH-adsorbed HPV18 VLP component was most sensitive to AP-induced destabilization. Optimal quadrivalent antigen storage stability while maintaining antimicrobial effectiveness was observed with 2-phenoxyethanol, benzyl alcohol, chlorobutanol, and 2-phenoxyethanol + benzyl alcohol combination. Interestingly, for single-AP containing multi-dose formulations, this rank-ordering of storage stability did not correlate with previously reported biophysical measurements of AP-induced antigen destabilization. Moreover, other APs (e.g., m-cresol, phenol, parabens) described by others for inclusion in multi-dose HPV VLP formulations showed suboptimal stability. These results suggest that each HPV VLP vaccine candidate (e.g., different serotypes, expression systems, processes, adjuvants) will require customized multi-dose formulation development.


Assuntos
Anti-Infecciosos , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Humanos , Papillomavirus Humano , Anticorpos Antivirais , Infecções por Papillomavirus/prevenção & controle , Conservantes Farmacêuticos , Adjuvantes Imunológicos , Álcoois Benzílicos
7.
J Pharm Sci ; 112(2): 446-457, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36096284

RESUMO

The development of multi-dose, subunit vaccine formulations can be challenging since antimicrobial preservatives (APs) often destabilize protein antigens. In this work, we evaluated Human Papillomavirus (HPV) Virus-Like Particles (VLPs) to determine if combining different APs used in approved parenteral products, each at lower concentrations than used alone, would maintain both antimicrobial effectiveness and antigen stability. To identify promising AP combinations, two different screening strategies were utilized: (1) empirical one-factor-at-a-time (OFAT) and (2) statistical design-of-experiments (DOE). Seven different APs were employed to screen for two- and three-AP combinations using high-throughput methods for antimicrobial effectiveness (i.e., microbial growth inhibition assay and a modified European Pharmacopeia method) and antigen stability (i.e., serotype-specific mAb binding to conformational epitopes of HPV6, 11, 16 VLPs by ELISA). The OFAT and DOE approaches were complementary, such that initial OFAT results (and associated lessons learned) were subsequently employed to optimize the combinations using DOE. Additional validation experiments confirmed the final selection of top AP-combinations predicted by DOE modeling. Overall, 20 candidate multi-dose formulations containing two- or three-AP combinations were down-selected. As described in Part 2 (companion paper), long-term storage stability profiles of aluminum-adjuvanted, quadrivalent HPV VLP formulations containing these lead candidate AP combinations are compared to single APs.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/química , Adjuvantes Imunológicos , Conservantes Farmacêuticos , Anticorpos Antivirais
8.
J Pharm Sci ; 111(11): 2983-2997, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35914546

RESUMO

Introducing multi-dose formulations of Human Papillomavirus (HPV) vaccines will reduce costs and enable improved global vaccine coverage, especially in low- and middle-income countries. This work describes the development of key analytical methods later utilized for HPV vaccine multi-dose formulation development. First, down-selection of physicochemical methods suitable for multi-dose formulation development of four HPV (6, 11, 16, and 18) Virus-Like Particles (VLPs) adsorbed to an aluminum adjuvant (Alhydrogel®, AH) was performed. The four monovalent AH-adsorbed HPV VLPs were then characterized using these down-selected methods. Second, stability-indicating competitive ELISA assays were developed using HPV serotype-specific neutralizing mAbs, to monitor relative antibody binding profiles of the four AH-adsorbed VLPs during storage. Third, concentration-dependent preservative-induced destabilization of HPV16 VLPs was demonstrated by addition of eight preservatives found in parenterally administered pharmaceuticals and vaccines, as measured by ELISA, dynamic light scattering, and differential scanning calorimetry. Finally, preservative stability and effectiveness in the presence of vaccine components were evaluated using a combination of RP-UHPLC, a microbial growth inhibition assay, and a modified version of the European Pharmacopoeia assay (Ph. Eur. 5.1.3). Results are discussed in terms of analytical challenges encountered to identify and develop high-throughput methods that facilitate multi-dose formulation development of aluminum-adjuvanted protein-based vaccine candidates.


Assuntos
Alphapapillomavirus , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Adjuvantes Imunológicos , Alumínio , Hidróxido de Alumínio , Anticorpos Antivirais , Humanos , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/química , Preparações Farmacêuticas , Vacinas Combinadas
9.
Sci Transl Med ; 13(584)2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33692132

RESUMO

Glioblastoma (GBM) is one of the most difficult cancers to effectively treat, in part because of the lack of precision therapies and limited therapeutic access to intracranial tumor sites due to the presence of the blood-brain and blood-tumor barriers. We have developed a precision medicine approach for GBM treatment that involves the use of brain-penetrant RNA interference-based spherical nucleic acids (SNAs), which consist of gold nanoparticle cores covalently conjugated with radially oriented and densely packed small interfering RNA (siRNA) oligonucleotides. On the basis of previous preclinical evaluation, we conducted toxicology and toxicokinetic studies in nonhuman primates and a single-arm, open-label phase 0 first-in-human trial (NCT03020017) to determine safety, pharmacokinetics, intratumoral accumulation and gene-suppressive activity of systemically administered SNAs carrying siRNA specific for the GBM oncogene Bcl2Like12 (Bcl2L12). Patients with recurrent GBM were treated with intravenous administration of siBcl2L12-SNAs (drug moniker: NU-0129), at a dose corresponding to 1/50th of the no-observed-adverse-event level, followed by tumor resection. Safety assessment revealed no grade 4 or 5 treatment-related toxicities. Inductively coupled plasma mass spectrometry, x-ray fluorescence microscopy, and silver staining of resected GBM tissue demonstrated that intravenously administered SNAs reached patient tumors, with gold enrichment observed in the tumor-associated endothelium, macrophages, and tumor cells. NU-0129 uptake into glioma cells correlated with a reduction in tumor-associated Bcl2L12 protein expression, as indicated by comparison of matched primary tumor and NU-0129-treated recurrent tumor. Our results establish SNA nanoconjugates as a potential brain-penetrant precision medicine approach for the systemic treatment of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas Metálicas , Ácidos Nucleicos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioblastoma/genética , Glioblastoma/terapia , Ouro , Humanos , Proteínas Musculares/metabolismo , Recidiva Local de Neoplasia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Interferência de RNA
10.
Glia ; 68(11): 2173-2191, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32134155

RESUMO

Widespread tumor cell invasion is a fundamental property of diffuse gliomas and is ultimately responsible for their poor prognosis. A greater understanding of basic mechanisms underlying glioma invasion is needed to provide insights into therapies that could potentially counteract them. While none of the currently available in vitro models can fully recapitulate the complex interactions of glioma cells within the brain tumor microenvironment, if chosen and developed appropriately, these models can provide controlled experimental settings to study molecular and cellular phenomena that are challenging or impossible to model in vivo. Therefore, selecting the most appropriate in vitro model, together with its inherent advantages and limitations, for specific hypotheses and experimental questions achieves primary significance. In this review, we describe and discuss commonly used methods for modeling and studying glioma invasion in vitro, including platforms, matrices, cell culture, and visualization techniques, so that choices for experimental approach are informed and optimal.


Assuntos
Neoplasias Encefálicas , Glioma , Encéfalo , Humanos , Invasividade Neoplásica , Microambiente Tumoral
11.
Cancers (Basel) ; 10(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314329

RESUMO

BACKGROUND: Patients with locally advanced or recurrent prostate cancer typically undergo androgen deprivation therapy (ADT), but the benefits are often short-lived and the responses variable. ADT failure results in castration-resistant prostate cancer (CRPC), which inevitably leads to metastasis. We hypothesized that differences in tumor transcriptional programs may reflect differential responses to ADT and subsequent metastasis. RESULTS: We performed whole transcriptome analysis of 20 patient-matched Pre-ADT biopsies and 20 Post-ADT prostatectomy specimens, and identified two subgroups of patients (high impact and low impact groups) that exhibited distinct transcriptional changes in response to ADT. We found that all patients lost the AR-dependent subtype (PCS2) transcriptional signatures. The high impact group maintained the more aggressive subtype (PCS1) signal, while the low impact group more resembled an AR-suppressed (PCS3) subtype. Computational analyses identified transcription factor coordinated groups (TFCGs) enriched in the high impact group network. Leveraging a large public dataset of over 800 metastatic and primary samples, we identified 33 TFCGs in common between the high impact group and metastatic lesions, including SOX4/FOXA2/GATA4, and a TFCG containing JUN, JUNB, JUND, FOS, FOSB, and FOSL1. The majority of metastatic TFCGs were subsets of larger TFCGs in the high impact group network, suggesting a refinement of critical TFCGs in prostate cancer progression. CONCLUSIONS: We have identified TFCGs associated with pronounced initial transcriptional response to ADT, aggressive signatures, and metastasis. Our findings suggest multiple new hypotheses that could lead to novel combination therapies to prevent the development of CRPC following ADT.

12.
Int J Oncol ; 51(1): 223-234, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28560383

RESUMO

Epidemiological studies have shown that dietary compounds have significant effects on prostate carcinogenesis. Among dietary agents, genistein, the major isoflavone in soybean, is of particular interest because high consumption of soy products has been associated with a low incidence of prostate cancer, suggesting a preventive role of genistein in prostate cancer. In spite of numerous studies to understand the effects of genistein on prostate cancer, the mechanisms of action have not been fully elucidated. We investigated the differences in methylation and gene expression levels of prostate specimens from a clinical trial of genistein supplementation prior to prostatectomy using Illumina HumanMethylation450 and Illumina HumanHT-12 v4 Expression BeadChip Microarrays. The present study was a randomized, placebo-controlled, double-blind clinical trial on Norwegian patients who received 30 mg genistein or placebo capsules daily for 3-6 weeks before prostatectomy. Gene expression changes were validated by quantitative PCR (qPCR). Whole genome methylation and expression profiling identified differentially methylated sites and expressed genes between placebo and genistein groups. Differentially regulated genes were involved in developmental processes, stem cell markers, proliferation and transcriptional regulation. Enrichment analysis suggested overall reduction in MYC activity and increased PTEN activity in genistein-treated patients. These findings highlight the effects of genistein on global changes in gene expression in prostate cancer and its effects on molecular pathways involved in prostate tumorigenesis.


Assuntos
Anticarcinógenos/farmacologia , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Genoma Humano , Neoplasias da Próstata/genética , Idoso , Método Duplo-Cego , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Prostatectomia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/cirurgia
13.
J Food Sci Technol ; 52(6): 3219-34, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26028703

RESUMO

Cereal blends containing pearl millet (Pennisetum glaucum), sorghum (Sorghum bicolor) and oat (Avena sativa) in different ratios were processed (roasted and germinated) and also used as unprocessed flours followed by fermentation with Lactobacillus sp. (Lactobacillus casei and Lactobacillus plantarum). They were screened for total phenolic content (TPC), phytic acid content (PAC) and free radical scavenging activity (FRSA). A formulation with the highest TPC, FRSA and the lowest PAC was selected to optimize a nutricereal based fermented baby food containing selected fermented cereal blends (FCB), rice-corn cooked flour (RCF), whole milk powder (WMP), whey protein concentrate (WPC) and sugar. The optimized baby food formulation contained 37.41 g 100 g(-1) FCB, 9.75 g 100 g(-1) RCF, 27.84 g 100 g(-1) WMP, 5 g 100 g(-1) WPC and 20 g 100 g(-1) sugar. It had high protein, vitamin, minerals, as well as good quantity of carbohydrates and fat, to fulfil the nutritional needs of preschool children of age 1-3 years. The nutricereal based fermented baby food showed high water absorption capacity, dispersibility, wettability and flowability indicating good reconstitution properties.

15.
Indian J Endocrinol Metab ; 17(Suppl 1): S188-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24251154

RESUMO

The association of multisystem pathologic conditions and epidermal nevi, known as the epidermal nevus syndrome, includes disorders of bone, central nervous system, eye, kidney, vasculature and skin. Rarely, congenital nevomelanocytic nevus also known as hairy nevus has also been reported in association with hypophosphatemic rickets. Studies suggest that phosphaturia, caused by circulating factors, called "phosphatonins" may be secreted by an epidermal or hairy nevus. We report here, a rare case of hypophosphatemic rickets associated with a giant hairy nevus in a 10-year-old boy.

16.
Appl Biochem Biotechnol ; 169(1): 1-14, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23096998

RESUMO

An intracellular aliphatic amide degrading inducible thermo-active amidase produced by Geobacillus pallidus BTP-5x MTCC 9225 was purified to apparent homogeneity using anion exchange and gel filtration chromatography, giving a yield of 6.7 % and a specific activity of 30.49 units mg(-1). The purified protein migrated as a single band of estimated molecular mass of 158 kDa (homo-tetramer) in 8 % polyacrylamide gel electrophoresis and ∼38.5 kDa in 12 % sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Optima of pH and temperature varied widely in broad pH range (pH 6-9) and temperature range (45-70 °C). The purified amidase was stable up to 6 h at 50 °C, with a t (1/2) of 7 h at 55 °C. The multimeric nature of the holozyme (tetramer) contributed to protection of the enzyme against thermal denaturation. The enzyme showed resistance to metal chelating agents (EDTA, 8-hydroxyquinoline, and sodium azide), explaining its non-metallic nature, and is strongly inhibited by thiol reagents that means cysteine is involved in catalysis. The amidase of G. pallidus BTP-5x preferentially hydrolyzed only small aliphatic amides and has a narrow substrate spectrum. The K (M) value for acrylamide is 10.54 mM, V (max) 45.19 µmol(-1) min(-1) mg(-1) protein, and k (cat) 4.29 min(-1). The sequence of amino acids of the purified enzyme MRHGDISSSHDTVGI appears similar to thermophilic amidases. Sequence analysis of the amidase gene showed that the enzyme is 347 amino-acid-long with a molecular weight of 38.4 kDa (as observed in SDS-PAGE), theoretical pI 5.38, and show strong similarity to thermostable amidases, possessing unique restriction sites.


Assuntos
Amidoidrolases/química , Amidoidrolases/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Geobacillus/enzimologia , Geobacillus/isolamento & purificação , Fontes Termais/microbiologia , Amidoidrolases/genética , Amidoidrolases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Estabilidade Enzimática , Geobacillus/genética , Temperatura Alta , Concentração de Íons de Hidrogênio , Índia , Cinética , Dados de Sequência Molecular , Peso Molecular , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA