Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1305: 342584, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677840

RESUMO

BACKGROUND: Inorganic pyrophosphatase (PPase) is key enzyme playing a key role in biochemical transformations such as biosynthesis of DNA and RNA, bone formation, metabolic pathways associated with lipid, carbohydrate and phosphorous. It has been reported that lung adenocarcinomas, colorectal cancer, and hyperthyroidism disorders can result from abnormal level of PPase. Therefore, it is of notable significance to develop simple and effective real time assay for PPase enzyme activity monitoring for screening of many metabolic pathways as well as for early disease diagnosis. RESULT: The fluorometric detection of PPase enzyme in near infrared region-1 (NIR-1) has been carried out using bimetallic nanoclusters (LA@AuAg NCs). The developed sensing strategy was based on quenching of fluorescence intensity of LA@AuAg NCs upon interaction with copper (Cu2+) ions. The off state of LA@AuAg_Cu2+ ensemble was turned on upon addition of pyrophosphate anion (PPi) due to strong binding interaction between PPi and Cu2+. The catalytic conversion of PPi into phosphate anion (Pi) in the presence of PPase led to liberation of Cu2+ ions, and again quenched off state was retrieved due to interaction of free Cu2+ with LA@AuAg NCs. The ultrasensitive detection of PPase was observed in the linear range of 0.06-250 mU/mL with LOD as 0.0025 mU/mL. The designed scheme showed good selectivity towards PPase enzyme in comparison to other bio-substrates, along with good percentage recovery for PPase detection in real human serum samples. SIGNIFICANCE: The developed NIR based assay is ultrasensitive, highly selective and robust for PPase enzyme and can be safely employed for other enzymes detection. This highly sensitive nature of biosensor was result of involvement of fluorescence-based technique and synergistic effect of dual metal in NIR based bimetallic NCs. Moreover, owing to the emission in NIR domain, in future, these nanoclusters can be safely employed for many biomedical applications for In vivo studies.


Assuntos
Cobre , Difosfatos , Fluorometria , Ouro , Pirofosfatase Inorgânica , Nanopartículas Metálicas , Prata , Cobre/química , Ouro/química , Pirofosfatase Inorgânica/metabolismo , Pirofosfatase Inorgânica/química , Prata/química , Nanopartículas Metálicas/química , Fluorometria/métodos , Difosfatos/química , Humanos , Limite de Detecção , Raios Infravermelhos
2.
Int J Biol Macromol ; 259(Pt 2): 129242, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199540

RESUMO

Doxorubicin (Dox), a chemotherapeutic agent, encounters challenges such as a short half-life, dose-dependent toxicity, and low solubility. In this context, the present study involved the fabrication of N-(2-hydroxypropyl)methacrylamide (HPMA) and N-(3-aminopropyl)methacrylamide (APMA) bearing P(HPMA-s-APMA) copolymeric nanoparticles (P(HPMA-s-APMA) NPs) and their investigation for efficient delivery of Dox. Furthermore, the synthesized nanoparticles (NPs) were coated with chitosan (Cht) to generate positively charged nanoformulations. The prepared formulations were evaluated for particle size, morphology, surface charge analysis, percentage encapsulation efficiency (EE%), and drug release studies. The anticancer activity of Cht-P(HPMA-s-APMA)-Dox NPs was assessed in the HeLa cancer cell line. The prepared P(HPMA-s-APMA)-Dox NPs exhibited an average particle size of 240-250 nm. Chitosan decorated P(HPMA-s-APMA)-Dox NPs displayed a significant increase in particle size, and the zeta potential shifted from negative to positive. The EE% for Cht-P(HPMA-s-APMA)-Dox NPs was calculated to be 68.06 %. The drug release studies revealed a rapid release of drug from Cht-P(HPMA-s-APMA)-Dox NPs at pH 4.8 than pH 7.4, demonstrating the pH-responsiveness of nanoformulation. Furthermore, the cell viability assay and internalization studies revealed that Cht-P(HPMA-s-APMA)-Dox NPs had a high cytotoxic response and significant cellular uptake. Hence, the Cht-P(HPMA-s-APMA)-Dox NPs appeared to be a suitable nanocarrier for effective, and safe chemotherapy.


Assuntos
Acrilamidas , Quitosana , Metacrilatos , Nanopartículas , Humanos , Doxorrubicina/farmacologia , Polímeros , Portadores de Fármacos , Sistemas de Liberação de Medicamentos
3.
Drug Dev Res ; 85(1): e22138, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38078492

RESUMO

The continuous pursuit of designing an ideal infection imaging agent is a crucial and ongoing endeavor in the field of biomedical research. Duramycin, an antimicrobial peptide exerts its antimicrobial action on bacteria by specific recognition of phosphatidylethanolamine (PE) moiety present on most bacterial membranes, particularly Escherichia coli (E. coli). E. coli membranes contain more than 60% PE. Therefore, duramycin is an attractive candidate for the formulation of probes for in situ visualization of E. coli driven focal infections. The aim of the present study is to develop 99m Tc labeled duramycin as a single-photon emission computed tomography (SPECT)-based agent to image such infections. Duramycin was successfully conjugated with a bifunctional chelator, hydrazinonicotinamide (HYNIC). PE specificity of HYNIC-duramycin was confirmed by a dye release assay on PE-containing model membranes. Radiolabeling of HYNIC-duramycin with 99m Tc was performed with consistently high radiochemical yield (>90%) and radiochemical purity (>90%). [99m Tc]Tc-HYNIC-duramycin retained its specificity for E. coli, in vitro. SPECT and biodistribution studies showed that the tracer could specifically identify E. coli driven infection at 3 h post injection. While 99m Tc-labeled duramycin is employed for monitoring early response to cancer therapy and cardiotoxicity, the current studies have confirmed, for the first time, the potential of utilizing 99m Tc labeled duramycin as an imaging agent for detecting bacteria. Its application in imaging PE-positive bacteria represents a novel and promising advancement.


Assuntos
Bacteriocinas , Escherichia coli , Compostos de Organotecnécio , Compostos de Organotecnécio/química , Distribuição Tecidual , Peptídeos/química , Peptídeos/metabolismo
4.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35008958

RESUMO

Worldwide, the number of cancer-related deaths continues to increase due to the ability of cancer cells to become chemotherapy-resistant and metastasize. For women with ovarian cancer, a staggering 70% will become resistant to the front-line therapy, cisplatin. Although many mechanisms of cisplatin resistance have been proposed, the key mechanisms of such resistance remain elusive. The RNA binding protein with multiple splicing (RBPMS) binds to nascent RNA transcripts and regulates splicing, transport, localization, and stability. Evidence indicates that RBPMS also binds to protein members of the AP-1 transcription factor complex repressing its activity. Until now, little has been known about the biological function of RBPMS in ovarian cancer. Accordingly, we interrogated available Internet databases and found that ovarian cancer patients with high RBPMS levels live longer compared to patients with low RBPMS levels. Similarly, immunohistochemical (IHC) analysis in a tissue array of ovarian cancer patient samples showed that serous ovarian cancer tissues showed weaker RBPMS staining when compared with normal ovarian tissues. We generated clustered regularly interspaced short palindromic repeats (CRISPR)-mediated RBPMS knockout vectors that were stably transfected in the high-grade serous ovarian cancer cell line, OVCAR3. The knockout of RBPMS in these cells was confirmed via bioinformatics analysis, real-time PCR, and Western blot analysis. We found that the RBPMS knockout clones grew faster and had increased invasiveness than the control CRISPR clones. RBPMS knockout also reduced the sensitivity of the OVCAR3 cells to cisplatin treatment. Moreover, ß-galactosidase (ß-Gal) measurements showed that RBPMS knockdown induced senescence in ovarian cancer cells. We performed RNAseq in the RBPMS knockout clones and identified several downstream-RBPMS transcripts, including non-coding RNAs (ncRNAs) and protein-coding genes associated with alteration of the tumor microenvironment as well as those with oncogenic or tumor suppressor capabilities. Moreover, proteomic studies confirmed that RBPMS regulates the expression of proteins involved in cell detoxification, RNA processing, and cytoskeleton network and cell integrity. Interrogation of the Kaplan-Meier (KM) plotter database identified multiple downstream-RBPMS effectors that could be used as prognostic and response-to-therapy biomarkers in ovarian cancer. These studies suggest that RBPMS acts as a tumor suppressor gene and that lower levels of RBPMS promote the cisplatin resistance of ovarian cancer cells.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Biomarcadores Tumorais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Splicing de RNA , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
5.
JACS Au ; 1(6): 865-878, 2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34240081

RESUMO

Efforts directed at curtailing the bioavailability of intracellular iron could lead to the development of broad-spectrum anticancer drugs given the metal's role in cancer proliferation and metastasis. Human ribonucleotide reductase (RNR), the key enzyme responsible for synthesizing the building blocks of DNA replication and repair, depends on Fe binding at its R2 subunit to activate the catalytic R1 subunit. This work explores an intracellular iron chelator transmetalative approach to inhibit RNR using the titanium(IV) chemical transferrin mimetic (cTfm) compounds Ti(HBED) and Ti(Deferasirox)2. Whole-cell EPR studies reveal that the compounds can effectively attenuate RNR activity though seemingly causing different changes to the labile iron pool that may account for differences in their potency against cells. Studies of Ti(IV) interactions with the adenosine nucleotide family at pH 7.4 reveal strong metal binding and extensive phosphate hydrolysis, which suggest the capacity of the metal to disturb the nucleotide substrate pool of the RNR enzyme. By decreasing intracellular Fe bioavailability and altering the nucleotide substrate pool, the Ti cTfm compounds could inhibit the activity of the R1 and R2 subunits of RNR. The compounds arrest the cell cycle in the S phase, indicating suppressed DNA replication, and induce apoptotic cell death. Cotreatment cell viability studies with cisplatin and Ti(Deferasirox)2 reveal a promising synergism between the compounds that is likely owed to their distinct but complementary effect on DNA replication.

6.
Front Med Technol ; 3: 678593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047931

RESUMO

Glioblastoma (GBM) is the most malignant form of all primary brain tumors, and it is responsible for around 200,000 deaths each year worldwide. The standard therapy for GBM treatment includes surgical resection followed by temozolomide-based chemotherapy and/or radiotherapy. With this treatment, the median survival rate of GBM patients is only 15 months after its initial diagnosis. Therefore, novel and better treatment modalities for GBM treatment are urgently needed. Mounting evidence indicates that non-coding RNAs (ncRNAs) have critical roles as regulators of gene expression. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are among the most studied ncRNAs in health and disease. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Several dysregulated miRNAs and lncRNAs have been identified in GBM cell lines and GBM tumor samples. Some of them have been proposed as diagnostic and prognostic markers, and as targets for GBM treatment. Most ncRNA-based therapies use oligonucleotide RNA molecules which are normally of short life in circulation. Nanoparticles (NPs) have been designed to increase the half-life of oligonucleotide RNAs. An additional challenge faced not only by RNA oligonucleotides but for therapies designed for brain-related conditions, is the presence of the blood-brain barrier (BBB). The BBB is the anatomical barrier that protects the brain from undesirable agents. Although some NPs have been derivatized at their surface to cross the BBB, optimal NPs to deliver oligonucleotide RNA into GBM cells in the brain are currently unavailable. In this review, we describe first the current treatments for GBM therapy. Next, we discuss the most relevant miRNAs and lncRNAs suggested as targets for GBM therapy. Then, we compare the current drug delivery systems (nanocarriers/NPs) for RNA oligonucleotide delivery, the challenges faced to send drugs through the BBB, and the strategies to overcome this barrier. Finally, we categorize the critical points where research should be the focus in order to design optimal NPs for drug delivery into the brain; and thus move the Oligonucleotide RNA-based therapies from the bench to the clinical setting.

7.
Chem Commun (Camb) ; 56(2): 289-292, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31808471

RESUMO

A novel biosensor for the rapid detection of lead ions employing the optical properties of AuNPs, a lead-specific aptamer and a cationic peptide has been demonstrated. The limit of detection of the biosensor was 98.7 pM, the lowest so far obtained using colorimetry.


Assuntos
Aptâmeros de Nucleotídeos/química , Colorimetria/métodos , Chumbo/análise , Nanopartículas Metálicas/química , Peptídeos/química , Técnicas Biossensoriais/métodos , Cor , DNA/química , Ouro/química , Limite de Detecção , Ressonância de Plasmônio de Superfície/métodos
8.
Biophys Chem ; 237: 38-46, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29656216

RESUMO

Gold nanoparticles (AuNPs) functionalized with different biomolecules find extensive application in therapy, clinical diagnosis and biomedical imaging. Herein, two derivatives of TAT peptide with sequences YGRKKRRQRRR and YGRKKRRQRRR-(ß-ala)3-Cys-amide were conjugated with tannic acid capped gold nanoparticles which acted as a carrier for cell penetrating peptides (CPPs) into the bacterial cells. The interaction of YGRKKRRQRRR peptide with AuNPs was non-covalent in nature whereas YGRKKRRQRRR-(ß-ala)3-Cys-amide interacted covalently with the AuNPs due to presence of thiol group in cysteine which bind strongly to gold nanoparticles surface. Further, tannic acid functionalised AuNPs conjugated CPPs constructs were duly characterized using critical flocculation essay test, UV-visible and TEM. FITC was tagged over AuNPs-CPPs in order to study the intracellular distribution using confocal microscopy. The confocal results revealed that nanoconjugates (AuNP-CPPs) of 5 nm diameter exhibited strong fluorescent signal in Gram positive and Gram negative bacterial strains. The present method can also be used for the killing of bacterial cells using photo-thermal therapy and therefore can be highly useful for targeting multi-drug resistant bacteria.


Assuntos
Peptídeos Penetradores de Células/metabolismo , Ouro/química , Ouro/metabolismo , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Nanopartículas Metálicas/química , Peptídeos Penetradores de Células/síntese química , Peptídeos Penetradores de Células/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Positivas/citologia , Estrutura Molecular , Tamanho da Partícula
9.
Bioconjug Chem ; 29(4): 1102-1110, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29489340

RESUMO

Peptide-based drug delivery systems have become a mainstay in the contemporary medicinal field, resulting in the design and development of better pharmaceutical formulations. However, most of the available reports employ tedious multiple reaction steps for the conjugation of bioactive cationic peptides with drug delivery vehicles. To overcome these limitations, the present work describes a one-step approach for facile and time efficient synthesis of highly cationic cell penetrating peptide functionalized gold nanoparticles and their intracellular delivery. The nanoconstruct was synthesized by the reduction of gold metal ions utilizing cell penetrating peptide (CPP), which facilitated the simultaneous synthesis of metal nanoparticles and the capping of the peptide over the nanoparticle surface. The developed nanoconstruct was thoroughly characterized and tested for intracellular delivery into HeLa cells. Intriguingly, a high payload of cationic peptide over gold particles was achieved, in comparison to conventional conjugation methods. Moreover, this method also provides the ability to control the size and peptide payload of nanoparticles. The nanoconstructs produced showed enhanced cancer cell penetration (µM) and significant cytotoxic effect compared to unlabeled gold nanoparticles. Therefore, this novel approach may also have significant future potential to kill intracellular hidden dreaded pathogens like the human immunodeficiency virus, Mycobacterium tuberculosis, and so forth.


Assuntos
Peptídeos Penetradores de Células/administração & dosagem , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/síntese química , Cátions , Proliferação de Células/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacologia , Coloides/química , Sistemas de Liberação de Medicamentos , Estabilidade de Medicamentos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Peptídeos/química , Temperatura , Água
10.
Dermatol Online J ; 23(1)2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-28329469

RESUMO

We present a 36-year-old HIV-positive man with a sixweek history of spreading, ulcerative, and necroticcutaneous lesions. Laboratory and histopathologicexamination revealed syphilis. This case of malignantsyphilis, also known as lues maligna, is an uncommonvariant of this sexually transmitted infection. This casehighlights the importance of including malignantsyphilis in the differential diagnosis of patientspresenting with a disseminated ulcerative andnecrotic rash, especially in individuals with HIV.


Assuntos
Infecções por HIV/complicações , Úlcera Cutânea/diagnóstico , Pele/patologia , Sífilis Cutânea/diagnóstico , Adulto , Humanos , Masculino , Necrose , Úlcera Cutânea/etiologia , Úlcera Cutânea/patologia , Sífilis Cutânea/complicações , Sífilis Cutânea/patologia
11.
Echocardiography ; 31(2): 218-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24446750

RESUMO

Coexistence of bicuspid aortic and pulmonary valves in the same patient is a very rare entity identified mainly during surgery and postmortem. To the best of our knowledge, only one case has been diagnosed by two-dimensional echocardiography in a newborn with malposition of the great arteries but no images were presented. Here, we are reporting the first case of bicuspid pulmonary and aortic valves diagnosed by live/real time three-dimensional transesophageal echocardiography in an adult with normally related great arteries.


Assuntos
Anormalidades Múltiplas/diagnóstico por imagem , Valva Aórtica/anormalidades , Ecocardiografia Tridimensional/métodos , Ecocardiografia Transesofagiana/métodos , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/diagnóstico por imagem , Valva Pulmonar/anormalidades , Valva Pulmonar/diagnóstico por imagem , Valva Aórtica/diagnóstico por imagem , Doença da Válvula Aórtica Bicúspide , Sistemas Computacionais , Feminino , Humanos , Pessoa de Meia-Idade
12.
Org Lett ; 13(19): 5176-9, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21902201

RESUMO

An efficient "thiol switch" approach for the synthesis of peptide thioesters via an acid-catalyzed N-S acyl shift and a thioester exchange reaction in tandem with concurrent removal of protecting groups is described. This method employs novel 2-(thiomethyl)thiazolidine (TMT)-anchored resins and is fully compatible with Fmoc chemistry.


Assuntos
Ésteres/síntese química , Peptídeos/química , Compostos de Sulfidrila/química , Tiazolidinas/química , Acilação , Catálise , Estrutura Molecular , Nitrogênio/química , Enxofre/química
13.
ChemMedChem ; 5(1): 86-95, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19943276

RESUMO

Synthetic antimicrobial peptides have recently emerged as promising candidates against drug-resistant pathogens. We identified a novel hexapeptide, Orn-D-Trp-D-Phe-Ile-D-Phe-His(1-Bzl)-NH(2), which exhibits broad-spectrum antifungal and antibacterial activity. A lead optimization was undertaken by conducting a full amino acid scan with various proteinogenic and non-proteinogenic amino acids depending on the hydrophobic or positive-charge character of residues at various positions along the sequence. The hexapeptide was also cyclized to study the correlation between the linear and cyclic structures and their respective antimicrobial activities. The synthesized peptides were found to be active against the fungus Candida albicans and Gram-positive bacteria such as methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus epidermidis, as well as the Gram-negative bacterium Escherichia coli; MIC values for the most potent structures were in the range of 1-5 microg mL(-1) (IC(50) values in the range of 0.02-2 microg mL(-1)). Most of the synthesized peptides showed no cytotoxic effects in an MTT assay up to the highest test concentration of 200 microg mL(-1). A tryptophan fluorescence quenching study was performed in the presence of negatively charged and zwitterionic model membranes, mimicking bacterial and mammalian membranes, respectively. The results of the fluorescence study demonstrate that the tested peptides are selective toward bacterial over mammalian cells; this is associated with a preferential interaction between the peptides and the negatively charged phospholipids of bacterial cells.


Assuntos
Anti-Infecciosos/síntese química , Peptídeos/síntese química , Sequência de Aminoácidos , Anti-Infecciosos/química , Anti-Infecciosos/toxicidade , Ciclização , Testes de Sensibilidade Microbiana , Peptídeos/química , Peptídeos/toxicidade
14.
Curr Med Chem ; 13(11): 1321-35, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16712473

RESUMO

Fungi are one of the most neglected pathogens apparent from the fact that the Amphotericin B, a polyene antibiotic, discovered way back in 1956 is still used as a "gold standard" for antifungal therapy. Past two decades have witnessed a dramatic rise in the incidences of life threatening systemic fungal infections. This can be ascribed to the increase in the number of immuno-compromised patients due to rise in HIV infected population, cancer chemotherapy and indiscriminate use of antibiotics. Majority of clinically used antifungals suffer from various drawbacks in terms of toxicity, efficacy and cost, and their frequent use has led to the emergence of resistant strains. Hence, there is a great demand for novel antifungals belonging to wide range of structural classes, selectively acting on novel targets with fewer side effects. This article aims at reviewing recent efforts made towards discovering novel antifungal drug targets and investigational molecules acting on them.


Assuntos
Antifúngicos , Desenho de Fármacos , Animais , Antifúngicos/uso terapêutico , Calcineurina/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/enzimologia , DNA Topoisomerases/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Fungos/efeitos dos fármacos , Fungos/fisiologia , Humanos , Micoses/tratamento farmacológico , Biossíntese de Proteínas/efeitos dos fármacos , ATPases Translocadoras de Prótons/metabolismo , Esfingolipídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA