Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Oxid Med Cell Longev ; 2022: 2451733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720184

RESUMO

The prevalence of viral infections, cancer, and diabetes is increasing at an alarming rate around the world, and these diseases are now considered to be the most serious risks to human well-being in the modern period. There is a widespread practice in Asian countries of using papaya leaves (C. papaya L.) as herbal medicine, either alone or in combination with prescribed medications, to treat a variety of ailments. The importance of conducting the necessary descriptive studies in order to determine the safety of papaya leaf consumption is also emphasized in the context of their application in the healthcare sector. Electronic databases such as Google Scholar, Scopus, and PubMed were used to gather information on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The literature was gathered from publications on papaya leaves, their therapeutic potential, and clinical evidence-based studies. The antidengue, anticancer, antidiabetic, neuroprotective, and anti-inflammatory effects of papaya leaves discussed in this article are supported by evidence from preclinical, in vivo, in vitro, and clinical trial studies, as well as from other sources. Leaves have been investigated for their mechanism of action as well as their potential to be used in the development of novel herbal products for the health business. According to the reports gathered, only a small number of research demonstrated that leaf extract at high concentrations was hazardous to certain organs. The collective literature reviewed in this review provides insights into the use of papaya leaves as a cure for epidemic diseases, highlighting the phytochemical composition and pharmacological attributes of papaya leaves, as well as the results of various preclinical and clinical studies that have been conducted so far on the subject. The review clearly demonstrates the successful medical evidence for the use of papaya leaf extracts in the healthcare system as a supplemental herbal medication in a variety of clinical settings.


Assuntos
Carica , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Carica/química , Humanos , Compostos Fitoquímicos , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Folhas de Planta
2.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834102

RESUMO

Carissa, a genus of the Apocynaceae family, consists of evergreen species, such as shrubs as well as small trees that are native to Asia, Africa, and Oceania's subtropical and tropical regions. Most of the Carissa species are traditionally used to treat various diseases, such as chest pain, headaches, gonorrhoea, rheumatism, syphilis, oedema, rabies, stomach pain, hepatitis, cardiac diseases, and asthma. The pharmacological studies on Carissa species revealed its antioxidant, antimicrobial, anticancer, cardioprotective, antipyretic, analgesic, wound healing, anticonvulsant, antiarthritic, adaptogenic, anti-inflammatory, and antidiabetic activities, thus validating its use in indigenous medicine systems. The review article summarised the comprehensive literature available, including morphology, indigenous uses, bioactive composition, nutraceutical, and pharmacological activities of Carissa species. A total of 155 research papers were cited in this review article. The Carissa fruits are rich in dietary fibre, lipids, proteins, carbohydrates, vitamin C, and macro- and micro-elements. A total of 121 compounds (35 polyphenols (flavonoids and phenolic acids), 30 lignans, 41 terpenoids, 7 steroids, 2 coumarins, and 6 cardiac glycosides) have been extracted from C. spinarum, C. carandas, and C. macrocarpa. Among all chemical constituents, lupeol, carissol, naringin, carisssone, scopoletin, carissaeduloside A, D, J, carandinol, sarhamnoloside, carissanol, olivil, carinol, 3ß-hydroxyolean-11-en-28,13ß-oilde, ursolic acid, and carissone are the key bioactive constituents responsible for pharmacological activities of genus Carissa. The gathered ethnopharmacological information in the review will help to understand the therapeutic relevance of Carissa as well as paving a way for further exploration in the discovery of novel plant-based drugs.


Assuntos
Apocynaceae/química , Suplementos Nutricionais , Etnofarmacologia , Compostos Fitoquímicos , Plantas Medicinais/química , África , Animais , Ásia , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico
3.
Molecules ; 26(4)2021 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-33672486

RESUMO

Medicinal plants and their derived compounds have drawn the attention of researchers due to their considerable impact on human health. Among medicinal plants, mint (Mentha species) exhibits multiple health beneficial properties, such as prevention from cancer development and anti-obesity, antimicrobial, anti-inflammatory, anti-diabetic, and cardioprotective effects, as a result of its antioxidant potential, combined with low toxicity and high efficacy. Mentha species are widely used in savory dishes, food, beverages, and confectionary products. Phytochemicals derived from mint also showed anticancer activity against different types of human cancers such as cervix, lung, breast and many others. Mint essential oils show a great cytotoxicity potential, by modulating MAPK and PI3k/Akt pathways; they also induce apoptosis, suppress invasion and migration potential of cancer cells lines along with cell cycle arrest, upregulation of Bax and p53 genes, modulation of TNF, IL-6, IFN-γ, IL-8, and induction of senescence phenotype. Essential oils from mint have also been found to exert antibacterial activities against Bacillus subtilis, Streptococcus aureus, Pseudomonas aeruginosa, and many others. The current review highlights the antimicrobial role of mint-derived compounds and essential oils with a special emphasis on anticancer activities, clinical data and adverse effects displayed by such versatile plants.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Antioxidantes/farmacologia , Mentha/química , Óleos Voláteis/farmacologia , Compostos Fitoquímicos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Bactérias/efeitos dos fármacos , Compostos de Bifenilo/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Humanos , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Picratos/antagonistas & inibidores
4.
Molecules ; 25(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570836

RESUMO

Fruits and vegetables are the highly used food products amongst the horticultural crops. These items are consumed uncooked, nominally cooked or fully cooked, according to their nature and cooking process. With the change in diet habits and rising population, the production, as well as the processing of horticultural crops, has exponentially improved to meet its increasing demand. A large amount of peel waste is generated from fruit and vegetable-based industries and household kitchen and has led to a big nutritional and economic loss and environmental problems. Processing of fruits and vegetables alone generates a significant waste, which amounts to 25-30% of the total product. Most common wastes include pomace, peels, rind and seeds, which are highly rich in valuable bioactive compounds such as carotenoids, enzymes, polyphenols, oils, vitamins and many other compounds. These bioactive compounds show their application in various industries such as food to develop edible films, food industries for probiotics and other industries for valuable products. The utilization of these low-cost waste horticultural wastes for producing the value-added product is a novel step in its sustainable utilization. The present review intends to summarize the different types of waste originating from fruits as well as vegetables peels and highlight their potential in developing edible films, probiotics, nanoparticles, carbon dots, microbial media, biochar and biosorbents.


Assuntos
Agricultura , Carotenoides , Frutas/química , Resíduos Industriais , Óleos de Plantas , Polifenóis , Verduras/química , Carotenoides/química , Carotenoides/isolamento & purificação , Óleos de Plantas/química , Óleos de Plantas/isolamento & purificação , Polifenóis/química , Polifenóis/isolamento & purificação
5.
Phytother Res ; 34(11): 2889-2910, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32515528

RESUMO

Essential oils (EOs) are regarded as alternative therapeutic agents for many diseases. In phytotherapy research areas, it is now well reported that conifers are the rich source of EOs. This review aims to update information on the biological sources and the best extraction processes of the significant constituents along with the traditional and therapeutic properties of the EOs from selected conifers of Himachal Pradesh, Northwestern Himalaya. In the present review, ten conifer species of high values have been selected. Results from several studies suggest that the conifers contain monoterpenes, sesquiterpenes, diterpenes, ketones, alcohols, and esters, which are used in medicines, food products, and cosmetics as well as other commercial and industrial products. Traditionally, the EOs from the conifers have been reported to be used against fever, cough, bronchitis, skin diseases, gastrointestinal disorders, and asthma. The pharmacological studies suggest that these EOs can be used as antirheumatic, antiseptic, antispasmodic, anticancer, anti-inflammatory, antitoxic, aphrodisiac, and astringent agents. It is, therefore, concluded that the EOs from the conifers might be one of the promising tools for the treatment of various diseases. Extensive research is required to ascertain the efficacy of the EOs from unstudied conifers.


Assuntos
Óleos Voláteis/uso terapêutico , Traqueófitas/química , Humanos , Óleos Voláteis/farmacologia
6.
Bioorg Med Chem Lett ; 27(9): 1923-1928, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28351589

RESUMO

A robust economic approach to N-(quinazoline-4-yl)sulfonamides was developed and synthesized different aryl, hetero aryl, alkyl and cyclopropyl sulfonamides in excellent yields. All the compounds were evaluated for cytotoxic affinity to SKOV3, DU145, THP1, U937, and COLO205 cell lines. Interesting to find that the bulkiness of substituent at C-2 position of quinazoline forces the molecule to flip around in order to bind in the active site, when compared to the binding preference of previously known quinazoline compounds. Among the 21 compounds synthesized 2b, 2d, 2e, 2h, 2i, 3c, 3d, 3f, 3g and 3h found to be active on all the cell lines tested with IC50 values <10µg/mL. Performed docking simulations to understand the binding preference of various C-2 substituted quinazoline sulfonamides.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Quinazolinas/química , Quinazolinas/farmacologia , Sulfonamidas/química , Sulfonamidas/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Quinazolinas/síntese química , Relação Estrutura-Atividade , Sulfonamidas/síntese química
7.
Molecules ; 20(10): 18437-63, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26473811

RESUMO

Cladribine, 2-chloro-2'-deoxyadenosine, is a highly efficacious, clinically used nucleoside for the treatment of hairy cell leukemia. It is also being evaluated against other lymphoid malignancies and has been a molecule of interest for well over half a century. In continuation of our interest in the amide bond-activation in purine nucleosides via the use of (benzotriazol-1yl-oxy)tris(dimethylamino)phosphonium hexafluorophosphate, we have evaluated the use of O6-(benzotriazol-1-yl)-2'-deoxyguanosine as a potential precursor to cladribine and its analogues. These compounds, after appropriate deprotection, were assessed for their biological activities, and the data are presented herein. Against hairy cell leukemia (HCL), T-cell lymphoma (TCL) and chronic lymphocytic leukemia (CLL), cladribine was the most active against all. The bromo analogue of cladribine showed comparable activity to the ribose analogue of cladribine against HCL, but was more active against TCL and CLL. The bromo ribose analogue of cladribine showed activity, but was the least active among the C6-NH2-containing compounds. Substitution with alkyl groups at the exocyclic amino group appears detrimental to activity, and only the C6 piperidinyl cladribine analogue demonstrated any activity. Against adenocarcinoma MDA-MB-231 cells, cladribine and its ribose analogue were most active.


Assuntos
Antineoplásicos/síntese química , Cladribina/síntese química , Guanosina/síntese química , Leucócitos Mononucleares/efeitos dos fármacos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Cladribina/farmacologia , Guanosina/farmacologia , Humanos , Concentração Inibidora 50 , Leucemia de Células Pilosas/patologia , Leucemia Linfocítica Crônica de Células B/patologia , Leucócitos Mononucleares/patologia , Linfoma de Células T/patologia , Compostos Organofosforados/química , Cultura Primária de Células , Relação Estrutura-Atividade
8.
Mol Cancer Ther ; 14(5): 1095-106, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25700704

RESUMO

The mTOR pathway is often upregulated in cancer and thus intensively pursued as a target to design novel anticancer therapies. Approved and emerging drugs targeting the mTOR pathway have positively affected the clinical landscape. Recently, activin receptor-like kinase 1 (ALK1), belonging to the TGFß receptor family, has been reported as an emerging target for antiangiogenic cancer therapy. Here, we describe a novel orally efficacious compound, P7170, that inhibits mTORC1/mTORC2/ALK1 activity with a potent cell growth inhibition. In cell-based assays, P7170 strongly inhibited (IC50 < 10 nmol/L) the phosphorylation of p70S6K (T389) and pAKT (S473). In many cancer cell lines, such as prostate, ovarian, colon, and renal, P7170 treatment resulted in marked cell growth inhibition. Furthermore, it induced G1-S cell-cycle arrest and autophagy. In vitro HUVEC tube formation, in vivo Matrigel plug, and rat aorta ring assays demonstrated that P7170 exhibited significant antiangiogenic activity. In addition, ALK1 knockdown studies in HUVEC confirmed that the antiangiogenic activity of P7170 was primarily due to ALK1 inhibition. Strong inhibition of ALK1 in addition to mTORC1/mTORC2 differentiates P7170 in its mechanism of action in comparison with existing inhibitors. In vivo mouse xenograft studies revealed P7170 to exhibit a significant dose-dependent tumor growth inhibition in a broad range of human tumor types when administered orally at 10 to 20 mg/kg doses. The distinctive pharmacological profile with favorable pharmacokinetic parameters and in vivo efficacy makes P7170 an attractive candidate for clinical development. It is currently being tested in phase I clinical studies.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Antineoplásicos/administração & dosagem , Imidazóis/administração & dosagem , Neoplasias da Próstata/tratamento farmacológico , Quinolinas/administração & dosagem , Receptores de Activinas Tipo II/antagonistas & inibidores , Administração Oral , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Aorta Torácica/citologia , Aorta Torácica/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Neoplasias da Próstata/metabolismo , Quinolinas/farmacologia , Ratos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Bioorg Med Chem Lett ; 24(24): 5587-5592, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25466180

RESUMO

Nitric oxide-releasing non-steroidal anti-inflammatory drugs (NO-NSAIDs) are gaining attention as potentially gastric-sparing NSAIDs. Herein, we report a novel class of '1-(nitrooxy)ethyl ester' group-containing NSAIDS as efficient NO releasing 'true' prodrugs of aspirin and naproxen. While an aspirin prodrug exhibited comparable oral bioavailability and antiplatelet activity (i.e., TXB2 inhibition) to those of aspirin, a naproxen prodrug exhibited better bioavailability than naproxen. These promising NO-NSAIDs protected experimental rats from gastric damage. We therefore believe that these promising NO-NSAIDs could represent a new class of potentially 'Safe NSAIDs' for the treatment of arthritic pain, inflammation and cardiovascular disorders in the case of NO-aspirin.


Assuntos
Aspirina/análogos & derivados , Naproxeno/análogos & derivados , Nitratos/química , Pró-Fármacos/química , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Anti-Inflamatórios não Esteroides/toxicidade , Área Sob a Curva , Aspirina/química , Aspirina/farmacocinética , Aspirina/farmacologia , Aspirina/toxicidade , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Ciclo-Oxigenase 1/química , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Desenho de Fármacos , Estabilidade de Medicamentos , Mucosa Gástrica/efeitos dos fármacos , Meia-Vida , Humanos , Naproxeno/química , Naproxeno/farmacocinética , Naproxeno/farmacologia , Naproxeno/toxicidade , Nitratos/farmacocinética , Nitratos/farmacologia , Nitratos/toxicidade , Óxido Nítrico/metabolismo , Inibidores da Agregação Plaquetária/química , Inibidores da Agregação Plaquetária/farmacocinética , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/toxicidade , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia , Pró-Fármacos/toxicidade , Curva ROC , Ratos , Ratos Sprague-Dawley , Tromboxano B2/metabolismo
10.
Mol Cancer ; 13: 259, 2014 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-25466244

RESUMO

BACKGROUND: Lung cancer is the major cause of cancer-related deaths and many cases of Non Small Cell Lung Cancer (NSCLC), a common type of lung cancer, have frequent genetic/oncogenic activation of EGFR, KRAS, PIK3CA, BRAF, and others that drive tumor growth. Some patients though initially respond, but later develop resistance to erlotinib/gefitinib with no option except for cytotoxic therapy. Therefore, development of novel targeted therapeutics is imperative to provide improved survival benefit for NSCLC patients. The mTOR cell survival pathway is activated in naïve, or in response to targeted therapies in NSCLC. METHODS: We have discovered P7170, a small molecule inhibitor of mTORC1/mTORC2/ALK1 and investigated its antitumor efficacy using various in vitro and in vivo models of human NSCLC. RESULTS: P7170 inhibited the phosphorylation of AKT, S6 and 4EBP1 (substrates for mTORC2 and mTORC1) levels by 80-100% and growth of NSCLC cells. P7170 inhibited anchorage-independent colony formation of NSCLC patient tumor-derived cells subsistent of disease sub-types. The compound also induced apoptosis in NSCLC cell lines. P7170 at a well-tolerated daily dose of 20 mg/kg significantly inhibited the growth of NSCLC xenografts independent of different mutations (EGFR, KRAS, or PIK3CA) or sensitivity to erlotinib. Pharmacokinetic-pharmacodynamic (PK-PD) analysis showed sub-micro molar tumor concentrations along with mTORC1/C2 inhibition. CONCLUSIONS: Our results provide evidence of antitumor activity of P7170 in the erlotinib -sensitive and -insensitive models of NSCLC.


Assuntos
Receptores de Activinas Tipo II/antagonistas & inibidores , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Imidazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Complexos Multiproteicos/antagonistas & inibidores , Quinolinas/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Receptores ErbB/farmacologia , Cloridrato de Erlotinib , Células HeLa , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Camundongos Nus , Fosfatidilinositol 3-Quinases/farmacologia , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas/farmacologia , Proteínas Proto-Oncogênicas p21(ras) , Quinazolinas/farmacologia , Proteínas ras/farmacologia
11.
Drug Des Devel Ther ; 8: 1107-23, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25170251

RESUMO

BACKGROUND: Anti-angiogenic therapy in certain cancers has been associated with improved control of tumor growth and metastasis. Development of anti-angiogenic agents has, however, been saddled with higher attrition rate due to suboptimal efficacy, narrow therapeutic windows, or development of organ-specific toxicities. The aim of this study was to evaluate the translational ability of the zebrafish efficacy-toxicity model to stratify anti-angiogenic agents based on efficacy, therapeutic windows, and off-target effects to streamline the compound selection process in anti-angiogenic discovery. METHODS: The embryonic model of zebrafish was employed for studying angiogenesis and toxicity. The zebrafish were treated with anti-angiogenic compounds to evaluate their effects on angiogenesis and zebrafish-toxicity parameters. Angiogenesis was measured by scoring the development of subintestinal vessels. Toxicity was evaluated by calculating the median lethal concentration, the lowest observed effect concentration, and gross morphological changes. Results of efficacy and toxicity were used to predict the therapeutic window. RESULTS: In alignment with the clinical outcomes, the zebrafish assays demonstrated that vascular endothelial growth factor receptor (VEGFR) inhibitors are the most potent anti-angiogenic agents, followed by multikinase inhibitors and inhibitors of endothelial cell proliferation. The toxicity assays reported cardiac phenotype in zebrafish treated with VEGFR inhibitors and multikinase inhibitors with VEGFR activity suggestive of cardiotoxic potential of these compounds. Several other pathological features were reported for multikinase inhibitors suggestive of off-target effects. The predicted therapeutic window was translational with the clinical trial outcomes of the anti-angiogenic agents. The zebrafish efficacy-toxicity approach could stratify anti-angiogenic agents based on the mechanism of action and delineate chemical structure-driven biological activity of anti-angiogenic compounds. CONCLUSION: The zebrafish efficacy-toxicity approach can be used as a predictive model for translational anti-angiogenic drug discovery to streamline compound selection, resulting in safer and efficacious anti-angiogenic agents entering the clinics.


Assuntos
Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Pesquisa Translacional Biomédica/métodos , Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/toxicidade , Animais , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Dose Letal Mediana , Modelos Animais , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neovascularização Patológica/patologia , Testes de Toxicidade/métodos , Peixe-Zebra/embriologia
12.
Adv Healthc Mater ; 2(6): 800-5, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23184885

RESUMO

A multicomponent magneto-dendritic nanosystem (MDNS) is designed for rapid tumor cell targeting, isolation, and high-resolution imaging by a facile bioconjugation approach. The highly efficient and rapid-acting MDNS provides a convenient platform for simultaneous isolation and high-resolution imaging of tumor cells, potentially leading towards an early diagnosis of cancer.


Assuntos
Separação Celular/métodos , Separação Imunomagnética/métodos , Técnicas de Diagnóstico Molecular/métodos , Nanopartículas , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Transferrina/farmacocinética , Células Hep G2 , Humanos , Separação Imunomagnética/instrumentação , Técnicas de Diagnóstico Molecular/instrumentação , Nanopartículas/química
13.
Mol Cancer Ther ; 11(7): 1598-608, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22532602

RESUMO

Despite advances in molecular pathogenesis, pancreatic cancer remains a major unsolved health problem. It is a rapidly invasive, metastatic tumor that is resistant to standard therapies. The phosphatidylinositol-3-kinase/Akt and mTOR signaling pathways are frequently dysregulated in pancreatic cancer. Gemcitabine is the mainstay treatment for metastatic pancreatic cancer. P276 is a novel CDK inhibitor that induces G(2)/M arrest and inhibits tumor growth in vivo models. Here, we determined that P276 sensitizes pancreatic cancer cells to gemcitabine-induced apoptosis, a mechanism-mediated through inhibition of Akt-mTOR signaling. In vitro, the combination of P276 and gemcitabine resulted in a dose- and time-dependent inhibition of proliferation and colony formation of pancreatic cancer cells but not with normal pancreatic ductal cells. This combination also induced apoptosis, as seen by activated caspase-3 and increased Bax/Bcl2 ratio. Gene profiling studies showed that this combination downregulated Akt-mTOR signaling pathway, which was confirmed by Western blot analyses. There was also a downregulation of VEGF and interleukin-8 expression suggesting effects on angiogenesis pathway. In vivo, intraperitoneal administration of the P276-Gem combination significantly suppressed the growth of pancreatic cancer tumor xenografts. There was a reduction in CD31-positive blood vessels and reduced VEGF expression, again suggesting an effect on angiogenesis. Taken together, these data suggest that P276-Gem combination is a novel potent therapeutic agent that can target the Akt-mTOR signaling pathway to inhibit both tumor growth and angiogenesis.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Antineoplásicos/administração & dosagem , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/metabolismo , Desoxicitidina/administração & dosagem , Desoxicitidina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Nus , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Oncogenes , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
14.
Front Biosci (Elite Ed) ; 3(4): 1273-88, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622134

RESUMO

The deregulated activity of the Bcr-Abl tyrosine kinase provides a rational basis for the development therapeutics in all phases of Chronic Myelogenous Leukemia (CML). Although a well studied imatinib therapy has clinical success against CML, resistance to imatinib due to mutations in the kinase domain, especially T315I poses a major problem for the ultimate success of CML therapy by this agent. Herein we describe an NPB001-05, derived from extract of Piper betle leafs, which is highly active in specifically inhibiting Bcr-Abl expressing cells. NPB001-05 inhibited the proliferation of BaF3 cells ectopically expressing wild type Bcr-Abl phenotype and 12 different imatinib-resistant mutations of clinical relevance (average IC50 5.7 microg/ml). Moreover, NPB001-05 was highly inhibitory to wild type P210(Bcr-Abl) and P210(Bcr-Abl-T315I) kinase activity and abrogated the autophosphorylating enzyme in time- and dose- dependent manner. NPB001-05 was non-toxic on normal cells, but was inhibitory to CML patient derived peripheral blood mononuclear cells. Treatment with NPB001-05 caused apoptosis induction and G0G1 cell cycle arrest in both Bcr-Abl wild type and T315I mutant cell lines.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Piperazinas/farmacologia , Extratos Vegetais/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Benzamidas , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/genética , Humanos , Mesilato de Imatinib , Mutação , Neoplasias/patologia , Fosforilação , Proteínas Tirosina Quinases/genética
15.
Front Biosci (Elite Ed) ; 3(4): 1349-64, 2011 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-21622141

RESUMO

Scientists are constantly searching for phytochemical compounds with anti-cancer activity. In this study, activity of plant extract NPB001-05 from Piper betle was tested on human chronic myelogenous leukemia (CML) xenograft models. NPB001-05 was active when dosed orally (500 mg/kg) once or twice a day in xenograft tumor models. NPB001-05 showed activity to T315I tumor xenograft, where imatinib failed to show antitumor activity. NPB001-05 showed no relevant toxicity in animal models during 2 weeks exposure to drug. Responsive tumor showed inhibition of tyrosine kinase activity with lowered Bcr-Abl protein levels and increased apoptosis. Microarray based transcription profiling studies demonstrated that both imatinib and NPB001-05 dysregulated imatinib- responsive genes. NPB001-05 showed additional genes selectively dysregulated from ER stress, PI3K/AKT, MAPK pathways. Additionally, we tested gene expression of PI3K, AKT1, JUN, CASP3 and DDIT3 in K562, BaF3P210(BCR-ABL) and BaF3 P210(BCR-ABLT315I) cell line treated for 6- and 12- hours with NPB001-05 and imatinib. The data indicates that NPB001-05 mediated cell death in K562 affects the function of ER stress. NPB001-05 shows antitumor activity with favorable toxicity profile.


Assuntos
Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Proteínas de Fusão bcr-abl/antagonistas & inibidores , Extratos Vegetais/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Administração Oral , Animais , Antineoplásicos/administração & dosagem , Sequência de Bases , Primers do DNA , Inibidores Enzimáticos/administração & dosagem , Humanos , Masculino , Camundongos , Camundongos SCID , Extratos Vegetais/administração & dosagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Bioorg Med Chem Lett ; 20(22): 6426-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20932758

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) is a critical regulatory protein of cellular response to hypoxia, and regulates the transcription of many genes involved in key aspects of cancer biology, including immortalization, maintenance of stem cell pools, cellular dedifferentiation, vascularization, and invasion/metastasis. HIF-1α has been implicated in the regulation of genes involved in angiogenesis, for example, VEGF and is associated with tumor progression. In the last decade, over expression of HIF-1α has been demonstrated in many common human cancers and emerging as a validated target for anticancer drug discovery. Here we report the discovery of newly designed and synthesized pyridylpyrimidine based potent and selective inhibitors of HIF-1α. P2630 has been found as potent antiproliferative, antiangiogenic and orally efficacious compound in PC-3 xenograft mice model.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Antineoplásicos/química , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos SCID
17.
Eur J Pharmacol ; 644(1-3): 220-9, 2010 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-20621086

RESUMO

A promising therapeutic approach to reduce pathological inflammation is to inhibit the increased production of pro-inflammatory cytokines (e.g., TNF-alpha, IL-6). In this study, we investigated the anti-inflammatory potential of 7-hydroxyfrullanolide (7HF). 7HF is an orally bioavailable, small molecule sesquiterpene lactone isolated from the fruit of Sphaeranthus indicus. 7HF significantly and dose-dependently diminished induced and spontaneous production of TNF-alpha and IL-6 from freshly isolated human mononuclear cells, synovial tissue cells isolated from patients with active rheumatoid arthritis and BALB/c mice. Oral administration of 7HF significantly protected C57BL/6J mice against endotoxin-mediated lethality. In the dextran sulfate sodium (DSS) model of murine colitis, oral administration of 7HF prevented DSS-induced weight loss, attenuated rectal bleeding, improved disease activity index and diminished shortening of the colon of C57BL/6J mice. Histological analyses of colonic tissues revealed that 7HF attenuated DSS-induced colonic edema, leukocyte infiltration in the colonic mucosa and afforded significant protection against DSS-induced crypt damage. 7HF was also significantly efficacious in attenuating carrageenan-induced paw edema in Wistar rats after oral administration. In the collagen-induced arthritis in DBA/1J mice, 7HF significantly reduced disease associated increases in articular index and paw thickness, protected against bone erosion and joint space narrowing and prominently diminished joint destruction, hyperproliferative pannus formation and infiltration of inflammatory cells. Collectively, these results provide evidence that 7HF-mediated inhibition of pro-inflammatory cytokines functionally results in marked protection in experimental models of acute and chronic inflammation.


Assuntos
Anti-Inflamatórios/farmacologia , Asteraceae/química , Inflamação/tratamento farmacológico , Sesquiterpenos/farmacologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/isolamento & purificação , Artrite Experimental/tratamento farmacológico , Artrite Experimental/fisiopatologia , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/fisiopatologia , Colite/tratamento farmacológico , Colite/fisiopatologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Ratos , Ratos Wistar , Sesquiterpenos/administração & dosagem , Sesquiterpenos/isolamento & purificação , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
18.
Bioorg Med Chem Lett ; 19(16): 4773-6, 2009 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-19592246

RESUMO

A series of novel 1,2,4-oxadiazole, phthalimide, amide and other derivatives of ISO-1 were synthesized and probed for inhibition of macrophage migration inhibitory factor (MIF) activity. Several compounds inhibited MIF enzymatic activity at levels better than ISO-1. Of note, compounds 7, 22, 23, 24, 25 and 27 inhibited the spontaneous secretion/release/recognition of MIF from freshly isolated human peripheral blood mononuclear cells and, more importantly, inhibited the MIF-induced production of interleukin-6 (IL-6) and/or interleukin-1beta (IL-1beta) significantly better than ISO-1.


Assuntos
Anti-Inflamatórios/síntese química , Isoxazóis/química , Receptores Imunológicos/antagonistas & inibidores , Amidas/química , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Linhagem Celular , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Isoxazóis/síntese química , Isoxazóis/farmacologia , Oxidiazóis/química , Ftalimidas/química , Receptores Imunológicos/metabolismo
19.
Bioorg Med Chem Lett ; 19(11): 2949-52, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19409777

RESUMO

A series of novel cyanopyridyl based molecules (1-14) were designed, synthesized and probed for inhibition of mammalian target of rapamycin (mTOR) activity. Compound 14 was found to be a potent inhibitor of mTOR activity as assessed by enzyme-linked immunoassays and Western blot analysis. Most importantly, systemic application (intraperitoneal; ip) of compound 14 significantly suppressed macroscopic and histological abnormalities associated with chemically-induced murine colitis.


Assuntos
Nitrilas/síntese química , Inibidores de Proteínas Quinases/síntese química , Proteínas Quinases/metabolismo , Piridinas/síntese química , Acrilamidas/síntese química , Acrilamidas/farmacocinética , Acrilamidas/uso terapêutico , Animais , Linhagem Celular Tumoral , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Modelos Animais de Doenças , Humanos , Camundongos , Nitrilas/química , Nitrilas/farmacocinética , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/química , Piridinas/farmacocinética , Piridinas/uso terapêutico , Serina-Treonina Quinases TOR
20.
Am J Physiol Gastrointest Liver Physiol ; 295(6): G1237-45, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18927209

RESUMO

Ulcerative colitis is an autoimmune-inflammatory disease characterized by increased proliferation of colonic epithelial cells, dysregulation of signal transduction pathways, elevated mucosal T cell activation, increased production of proinflammatory cytokines, and enhanced leukocyte infiltration into colonic interstitium. Several compounds that possess antiproliferative properties and/or inhibit cytokine production exhibit a therapeutic effect in murine models of colitis. Mammalian target of rapamycin (mTOR), a protein kinase regulating cell proliferation, is implicated in colon carcinogenesis. In this study, we report that a novel haloacyl aminopyridine-based molecule (P2281) is a mTOR inhibitor and is efficacious in a murine model of human colitis. In vitro studies using Western blot analysis and cell-based ELISA assays showed that P2281 inhibits mTOR activity in colon cancer cells. In vitro and in vivo assays of proinflammatory cytokine production revealed that P2281 diminishes induced IFN-gamma production but not TNF-alpha production, indicating preferential inhibitory effects of P2281 on T cell function. In the dextran sulfate sodium (DSS) model of colitis, 1) macroscopic colon observations demonstrated that P2281 significantly inhibited DSS-induced weight loss, improved rectal bleeding index, decreased disease activity index, and reversed DSS-induced shortening of the colon; 2) histological analyses of colonic tissues revealed that P2281 distinctly attenuated DSS-induced edema, prominently diminished the leukocyte infiltration in the colonic mucosa, and resulted in protection against DSS-induced crypt damage; and 3) Western blot analysis showed that P2281 blocks DSS-induced activation of mTOR. Collectively, these results provide direct evidence that P2281, a novel mTOR inhibitor, suppresses DSS-induced colitis by inhibiting T cell function and is a potential therapeutic for colitis. Given that compounds with anticancer activity show promising anti-inflammatory efficacy, our findings reinforce the cross-therapeutic functionality of potential drugs.


Assuntos
Aminopiridinas/uso terapêutico , Anilidas/uso terapêutico , Proteínas de Transporte/antagonistas & inibidores , Colite/tratamento farmacológico , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Colite/induzido quimicamente , Sulfato de Dextrana , Modelos Animais de Doenças , Humanos , Interferon gama/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR , Fator de Necrose Tumoral alfa/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA