Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 186: 106465, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38036109

RESUMO

PURPOSE: Cervical cancer accounts for a high number of deaths worldwide. Risk factors are extensive for cervix cancer but Human papillomavirus (HPV) plays a prime role in its development. Different strains of HPV are prevalent globally, which show different grades of mortality and morbidity among women. This study is planned to evaluate the molecular mechanism of different strains of HPV infection and progression leading to cervix cancer. METHODS: This review includes different research articles on cervix cancer progression reported from India and all over the world. RESULTS: HPV 16 and 18 are prevalent strains using heparan sulfate-independent and dependent pathways for viral replication inside the cell. It also uses transcription mechanisms through NF-kappa B, FOXA-1, and AP-1 genes while strains like HPV-35, 45, and 52 are also predominant in India, which showed a very slow mechanism of progression due to which mortality rate is low after their infection with these strains. CONCLUSION: HPV uses E6 and E7 proteins which activate NF-kappa B and AP-1 pathway which suppresses the tumor suppressor gene and activates cytokine production, causing inflammation and leading to a decrease in apoptosis due to Caspase-3 activation. In contrast, the E7 protein involves HOXA genes and decreases apoptotic factors due to which mortality and incidence rates are low in viruses that use E7 motifs. Some HPV strains employ the cap-dependent pathway, which is also associated with lower mortality and infection rates.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Proteínas Oncogênicas Virais/genética , NF-kappa B , Proteínas E7 de Papillomavirus , Fator de Transcrição AP-1 , Papillomaviridae/genética , Papillomaviridae/metabolismo
2.
ACS Appl Bio Mater ; 6(11): 4846-4855, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862707

RESUMO

Heteroatom doping on carbon dots (Cdots) has been developed as an efficient approach to modify its optical and electronic properties. The four different types of heteroatom-doped Cdots (undoped Cdots (u-Cdots, nitrogen-doped Cdots (N-Cdots), sulfur-doped Cdots (Cdots), nitrogen, sulfur codoped Cdots (N, S-Cdots)) have been synthesized through a simple heat treatment of 5 min. Among four different heteroatoms doped nanosensors, N, S-Cdots with MnO2 nanospheres (Mn NS) showed one of the best fluorescents "on-off-on" nanosensors for selective sensing of glutathione (GSH) and cell imaging. N, S-Cdots showed a high fluorescence quantum yield, good photostability, ionic strength, and pH stability. N, S-Cdots with Mn NS demonstrated extremely high fluorescence quenching efficiency and the maximum fluorescence recovery rate after adding GSH to the produced solution. The photophysical study of N, S-Cdots-Mn NS used as a sensor confirms the inner filter effect (IFE) quenching mechanism between them. The developed sensor has an 80 nM limit of detection (LOD) for GSH. The heteroatom-doped framework of Cdots plays a significant role in the sensitive detection of GSH. N, S-Cdots-Mn NS have good permeability, biocompatibility, and low toxicity, due to which it was used in the intracellular imaging of GSH in living cells. The prepared sensor is rapid, economical, less toxic, and highly applicable in diagnosing diseases.


Assuntos
Compostos de Manganês , Óxidos , Carbono , Glutationa , Nitrogênio , Enxofre
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA