Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 42(3): 847-889, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37204562

RESUMO

Cancer is one of the life-threatening diseases accountable for millions of demises globally. The inadequate effectiveness of the existing chemotherapy and its harmful effects has resulted in the necessity of developing innovative anticancer agents. Thiazolidin-4-one scaffold is among the most important chemical skeletons that illustrate anticancer activity. Thiazolidin-4-one derivatives have been the subject of extensive research and current scientific literature reveals that these compounds have shown significant anticancer activities. This manuscript is an earnest attempt to review novel thiazolidin-4-one derivatives demonstrating considerable potential as anticancer agents along with a brief discussion of medicinal chemistry-related aspects of these compounds and structural activity relationship studies in order to develop possible multi-target enzyme inhibitors. Most recently, various synthetic strategies have been developed by researchers to get various thiazolidin-4-one derivatives. In this review, the authors highlight the various synthetic, green, and nanomaterial-based synthesis routes of thiazolidin-4-ones as well as their role in anticancer activity by inhibition of various enzymes and cell lines. The detailed description of the existing modern standards in the field presented in this article may be interesting and beneficial to the scientists for further exploration of these heterocyclic compounds as possible anticancer agents.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Relação Estrutura-Atividade
2.
Chembiochem ; 22(4): 712-716, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33058439

RESUMO

A nonenzymatic Pictet-Spengler reaction has been postulated to give rise to a subset of naturally occurring uridyl peptide antibiotics (UPAs). Here, using a combination of strain engineering and synthetic chemistry, we demonstrate that Pictet-Spengler chemistry may be employed to generate even greater diversity in the UPAs. We use an engineered strain to afford access to meta-tyrosine containing pacidamycin 4. Pictet-Spengler diversification of this compound using a small series of aryl-aldehydes was achieved with some derivatives affording remarkable diastereomeric control.


Assuntos
Antibacterianos/síntese química , Oligopeptídeos/síntese química , Peptídeos/síntese química , Streptomyces/metabolismo , Uridina/análogos & derivados , Uridina/síntese química
3.
mBio ; 9(6)2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30482829

RESUMO

Low-molecular-weight (LMW) thiols mediate redox homeostasis and the detoxification of chemical stressors. Despite their essential functions, the distribution of LMW thiols across cellular life has not yet been defined. LMW thiols are also thought to play a central role in sulfur oxidation pathways in phototrophic bacteria, including the Chlorobiaceae Here we show that Chlorobaculum tepidum synthesizes a novel LMW thiol with a mass of 412 ± 1 Da corresponding to a molecular formula of C14H24N2O10S, which suggests that the new LMW thiol is closely related to bacillithiol (BSH), the major LMW thiol of low-G+C Gram-positive bacteria. The Cba. tepidum LMW thiol structure was N-methyl-bacillithiol (N-Me-BSH), methylated on the cysteine nitrogen, the fourth instance of this modification in metabolism. Orthologs of bacillithiol biosynthetic genes in the Cba. tepidum genome and the CT1040 gene product, N-Me-BSH synthase, were required for N-Me-BSH synthesis. N-Me-BSH was found in all Chlorobiaceae examined as well as Polaribacter sp. strain MED152, a member of the Bacteroidetes A comparative genomic analysis indicated that BSH/N-Me-BSH is synthesized not only by members of the Chlorobiaceae, Bacteroidetes, Deinococcus-Thermus, and Firmicutes but also by Acidobacteria, Chlamydiae, Gemmatimonadetes, and Proteobacteria. Thus, BSH and derivatives appear to be the most broadly distributed LMW thiols in biology.IMPORTANCE Low-molecular-weight thiols are key metabolites that participate in many basic cellular processes: central metabolism, detoxification, and oxidative stress resistance. Here we describe a new thiol, N-methyl-bacillithiol, found in an anaerobic phototrophic bacterium and identify a gene that is responsible for its synthesis from bacillithiol, the main thiol metabolite in many Gram-positive bacteria. We show that the presence or absence of this gene in a sequenced genome accurately predicts thiol content in distantly related bacteria. On the basis of these results, we analyzed genome data and predict that bacillithiol and its derivatives are the most widely distributed thiol metabolites in biology.


Assuntos
Vias Biossintéticas/genética , Chlorobi/genética , Chlorobi/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Genoma Bacteriano , Glucosamina/química , Glucosamina/metabolismo , Estrutura Molecular , Peso Molecular
4.
Chembiochem ; 17(18): 1689-92, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27332744

RESUMO

The thiol pKa and standard redox potential of mycothiol, the major low-molecular-weight thiol cofactor in the actinomycetes, are reported. The measured standard redox potential reveals substantial discrepancies in one or more of the other previously measured intracellular parameters that are relevant to mycothiol redox biochemistry.


Assuntos
Actinobacteria/metabolismo , Coenzimas/metabolismo , Cisteína/química , Cisteína/metabolismo , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Inositol/química , Inositol/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo , Actinobacteria/química , Coenzimas/química , Concentração de Íons de Hidrogênio , Conformação Molecular , Peso Molecular , Oxirredução
5.
Chembiochem ; 14(16): 2160-8, 2013 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-24115506

RESUMO

Bacillithiol (BSH) is the major low-molecular-weight (LMW) thiol in many low-G+C Gram-positive bacteria (Firmicutes). Evidence now emerging suggests that BSH functions as an important LMW thiol in redox regulation and xenobiotic detoxification, analogous to what is already known for glutathione and mycothiol in other microorganisms. The biophysical properties and cellular concentrations of such LMW thiols are important determinants of their biochemical efficiency both as biochemical nucleophiles and as redox buffers. Here, BSH has been characterised and compared with other LMW thiols in terms of its thiol pKa , redox potential and thiol-disulfide exchange reactivity. Both the thiol pKa and the standard thiol redox potential of BSH are shown to be significantly lower than those of glutathione whereas the reactivities of the two compounds in thiol-disulfide reactions are comparable. The cellular concentration of BSH in Bacillus subtilis varied over different growth phases and reached up to 5 mM, which is significantly greater than previously observed from single measurements taken during mid-exponential growth. These results demonstrate that the biophysical characteristics of BSH are distinctively different from those of GSH and that its cellular concentrations can reach levels much higher than previously reported.


Assuntos
Bacillus subtilis/química , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Aminas/química , Bacillus subtilis/metabolismo , Ácidos Carboxílicos/química , Cisteína/química , Glucosamina/química , Glutationa/química , Cinética , Oxirredução , Compostos de Sulfidrila/química
6.
Biochem J ; 454(2): 239-47, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23758290

RESUMO

BshB, a key enzyme in bacillithiol biosynthesis, hydrolyses the acetyl group from N-acetylglucosamine malate to generate glucosamine malate. In Bacillus anthracis, BA1557 has been identified as the N-acetylglucosamine malate deacetylase (BshB); however, a high content of bacillithiol (~70%) was still observed in the B. anthracis ∆BA1557 strain. Genomic analysis led to the proposal that another deacetylase could exhibit cross-functionality in bacillithiol biosynthesis. In the present study, BA1557, its paralogue BA3888 and orthologous Bacillus cereus enzymes BC1534 and BC3461 have been characterized for their deacetylase activity towards N-acetylglucosamine malate, thus providing biochemical evidence for this proposal. In addition, the involvement of deacetylase enzymes is also expected in bacillithiol-detoxifying pathways through formation of S-mercapturic adducts. The kinetic analysis of bacillithiol-S-bimane conjugate favours the involvement of BA3888 as the B. anthracis bacillithiol-S-conjugate amidase (Bca). The high degree of specificity of this group of enzymes for its physiological substrate, along with their similar pH-activity profile and Zn²âº-dependent catalytic acid-base reaction provides further evidence for their cross-functionalities.


Assuntos
Amidoidrolases/metabolismo , Bacillus anthracis/metabolismo , Bacillus cereus/metabolismo , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Glucosamina/análogos & derivados , Acetilação , Acetilglucosamina/análogos & derivados , Acetilglucosamina/metabolismo , Amidoidrolases/química , Amidoidrolases/genética , Amidoidrolases/isolamento & purificação , Sequência de Aminoácidos , Substituição de Aminoácidos , Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Biocatálise , Domínio Catalítico , Sequência Conservada , Cisteína/metabolismo , Glucosamina/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Malatos/metabolismo , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/isolamento & purificação , Proteínas Mutantes/metabolismo , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Zinco/metabolismo
7.
Biochem J ; 451(1): 69-79, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23256780

RESUMO

FosB is a divalent-metal-dependent thiol-S-transferase implicated in fosfomycin resistance among many pathogenic Gram-positive bacteria. In the present paper, we describe detailed kinetic studies of FosB from Staphylococcus aureus (SaFosB) that confirm that bacillithiol (BSH) is its preferred physiological thiol substrate. SaFosB is the first to be characterized among a new class of enzyme (bacillithiol-S-transferases), which, unlike glutathione transferases, are distributed among many low-G+C Gram-positive bacteria that use BSH instead of glutathione as their major low-molecular-mass thiol. The K(m) values for BSH and fosfomycin are 4.2 and 17.8 mM respectively. Substrate specificity assays revealed that the thiol and amino groups of BSH are essential for activity, whereas malate is important for SaFosB recognition and catalytic efficiency. Metal activity assays indicated that Mn(2+) and Mg(2+) are likely to be the relevant cofactors under physiological conditions. The serine analogue of BSH (BOH) is an effective competitive inhibitor of SaFosB with respect to BSH, but uncompetitive with respect to fosfomycin. Coupled with NMR characterization of the reaction product (BS-fosfomycin), this demonstrates that the SaFosB-catalysed reaction pathway involves a compulsory ordered binding mechanism with fosfomycin binding first followed by BSH which then attacks the more sterically hindered C-1 carbon of the fosfomycin epoxide. Disruption of BSH biosynthesis in S. aureus increases sensitivity to fosfomycin. Together, these results indicate that SaFosB is a divalent-metal-dependent bacillithiol-S-transferase that confers fosfomycin resistance on S. aureus.


Assuntos
Antibacterianos/química , Proteínas de Bactérias/química , Farmacorresistência Bacteriana , Fosfomicina/química , Staphylococcus aureus/enzimologia , Transferases/química , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína/análogos & derivados , Cisteína/genética , Cisteína/metabolismo , Fosfomicina/farmacologia , Glucosamina/análogos & derivados , Glucosamina/genética , Glucosamina/metabolismo , Cinética , Magnésio/química , Magnésio/metabolismo , Manganês/química , Manganês/metabolismo , Staphylococcus aureus/genética , Transferases/genética , Transferases/metabolismo
8.
J Org Chem ; 76(17): 7076-83, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21756002

RESUMO

In this article we report the first example of a Lewis acid promoted, one-pot, Brønsted acid free, high-yielding synthesis of the calixarene macrocycle from the "monomer" p-tert-butylphenol. We report that when a commercially available metal salt (Lewis acid) is incorporated within the calixarene-forming reaction, a certain amount of control over the size of the calixarenes produced can be gained. Although a detailed mechanistic rationale on how the macrocycle is assembled is unclear, what is evident from this work is that the metal cation, the counteranion, and the oxidation state of the salt employed are all important contributors to the outcome of the reaction process. Indeed, evidence to date suggests that a subtle "symbiotic" relationship exists between the metal cation, its oxidation state, and the anion that allows the efficient transformation of the "monomeric" p-tert-butylphenol into linear oligomers and, ultimately, into macrocyclic calixarenes. Athough the metal salt mediated process described herein is efficient and high-yielding, what is also fundamentally important is that a comprehensive mechanistic understanding of how the calixarenes are assembled be accrued. Searching for possible indicators or clues, we propose that oligomeric methylene-linked phenolic entities are initially formed and that these, we tentatively suggest, generate metal and/or anion hydrogen-bonded supramolecular intermediates. It is possible that the preorganization of the linear polyphenolic oligomers allows the formation of hydrogen-bonded structures which, critically, result in the formation of supramolecular assemblies that are subsequently "stitched" together, generating the p-tert-butylcalix[n]arenes (n = 4-9) in excellent yields. Substantiating the possibility that hydrogen-bonded entities are generated (and that these subsequently afford metal-templated assemblies), we make reference to a seldom cited 1962 Nature publication that reported the propensity of polyphenolic linear oligomers to form "well-defined intramolecularly hydrogen-bonded conformations".

10.
Chem Commun (Camb) ; (4): 389-91, 2007 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-17220980

RESUMO

The first synthesis of innovative alpha-amino acid conjugates of Tröger base is reported; their potential application as conformationally restricted scaffolds is proposed and has been investigated using high level ab initio calculations.


Assuntos
Aminoácidos/química , Aminoácidos/síntese química , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Peptídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA