Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 142(2): 389-98, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24166281

RESUMO

Pre-clinical and epidemiologic studies provide rationale for evaluating lipophilic statins for breast cancer prevention. We conducted a single-arm, biomarker modulation trial of lovastatin among women with increased risk of breast cancer. Eligibility criteria included a deleterious germline mutation in BRCA1, BRCA2, CDH1, or TP53; lifetime breast cancer risk of ≥20 % as estimated by the Claus model; or personal history of estrogen receptor and progesterone receptor-negative breast cancer. Participants received 40 mg of lovastatin orally twice daily for 6 months. We evaluated the following biomarkers before and after lovastatin use: breast duct cytology (primary endpoint), serum lipids, C-reactive protein, insulin-like growth factor-1, IGF binding protein-3, lipid peroxidation, oxidative DNA damage, 3-hydroxy-3-methylglutaryl CoA reductase genotype, and mammographic density. Thirty women were enrolled, and 26 (86.7 %) completed the study. For the primary endpoint of changes in breast duct cytology sampled by random periareolar fine needle aspiration, most participants [57.7 %, 95 % confidence interval (CI) 38.9-74.5 %] showed no change after lovastatin; 19.2 % (CI 8.1-38.3 %) had a favorable change in cytology, 7.7 % (95 % CI 1.0-25.3 %) had an unfavorable change, and 15.4 % (95 % CI 5.5-34.2 %) had equivocal results due to acellular specimens, usually after lovastatin. No significant changes were observed in secondary biomarker endpoints. The study was generally well-tolerated: 4 (13.3 %) participants did not complete the study, and one (3.8 %) required a dose reduction. This trial was technically feasible, but demonstrated no significant biomarker modulation; contributing factors may include insufficient sample size, drug dose and/or duration. The results are inconclusive and do not exclude a favorable effect on breast cancer risk.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Lovastatina/uso terapêutico , Glândulas Mamárias Humanas/anormalidades , Glândulas Mamárias Humanas/citologia , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Anticarcinógenos/efeitos adversos , Anticarcinógenos/uso terapêutico , Biomarcadores Tumorais/sangue , Biópsia por Agulha Fina , Densidade da Mama , Neoplasias da Mama/genética , Neoplasias da Mama/prevenção & controle , Proteína C-Reativa/metabolismo , Dano ao DNA , Desoxiguanosina/análogos & derivados , Desoxiguanosina/sangue , Feminino , Predisposição Genética para Doença , Humanos , Hidroximetilglutaril-CoA Redutases/genética , Peroxidação de Lipídeos/efeitos dos fármacos , Lipídeos/sangue , Lovastatina/efeitos adversos , Glândulas Mamárias Humanas/efeitos dos fármacos , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Cooperação do Paciente
2.
BMC Pharmacol ; 11: 7, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21771338

RESUMO

BACKGROUND: Breast cancers due to germline mutations or altered expression of the BRCA1 gene associate with an aggressive clinical course and frequently exhibit a "triple-negative" phenotype, i.e. lack of expression of the estrogen and progesterone hormone receptors and lack of overexpression of the HER2/NEU oncogene, thereby rendering them relatively insensitive to hormonal manipulation and targeted HER2 therapy, respectively. BRCA1 plays a role in multiple DNA repair pathways, and thus, when mutated, results in sensitivity to certain DNA damaging drugs. RESULTS: Here, we used a Brca1 murine mammary epithelial cell (MMEC) model to examine the effect of loss of Brca1 on cellular sensitivity to various chemotherapy drugs. To explore novel therapeutic strategies, we included DNA damaging and non-DNA damaging drugs whose mechanisms are dependent and independent of DNA repair, respectively, and drugs that are used in standard and non-standard lines of therapy for breast cancer. To understand the cellular mechanism, we also determined the role that DNA repair plays in sensitivity to these drugs. We found that cisplatin and gemcitabine had the greatest specific therapeutic benefit to Brca1-deficient MMECs, and that when used in combination produced a synergistic effect. This sensitivity may be attributed in part to defective NER, which is one of the DNA repair pathways normally responsible for repairing DNA adducts produced by cisplatin and is shown in this study to be defective in Brca1-deficient MMECs. Brca1-deficient MMECs were not differentially sensitive to the standard breast cancer chemotherapy drugs doxorubicin, docetaxel or 5-FU. CONCLUSIONS: Both cisplatin and gemcitabine should be explored in clinical trials for first line regimens for BRCA1-associated and triple-negative breast cancer.


Assuntos
Antineoplásicos/farmacologia , Cisplatino/farmacologia , Desoxicitidina/análogos & derivados , Genes BRCA1 , Neoplasias Mamárias Experimentais/tratamento farmacológico , Animais , Dano ao DNA , Reparo do DNA , Desoxicitidina/farmacologia , Células Epiteliais/efeitos dos fármacos , Feminino , Glândulas Mamárias Animais/efeitos dos fármacos , Camundongos , Gencitabina
3.
Cancer Res ; 69(8): 3589-96, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19351835

RESUMO

Subtypes of breast cancer that represent the two major types of epithelial cells in the breast (luminal and basal) carry distinct histopathologic profiles. Breast cancers of the basal-like subtype, which include the majority of hereditary breast cancers due to mutations in the breast cancer susceptibility gene 1 (BRCA1), frequently assume triple-negative status, i.e., they lack expression of estrogen receptor-alpha and progesterone receptor, and lack overexpression or amplification of the HER2/NEU oncogene. Defects in DNA damage response pathways result in genome instability and lead to carcinogenesis, but may also be exploited for therapeutic purposes. We analyzed repair of oxidative DNA damage by the base-excision repair (BER) pathway, which when aberrant leads to genomic instability and breast carcinogenesis, in cell lines that represent the different subtypes of breast cancer and in the presence of BRCA1 deficiency. We found that basal-like and BRCA1-mutated breast cancer cells were defective in BER of oxidative DNA damage, and that this defect conferred sensitivity to inhibition of poly(ADP-ribose) polymerase, a DNA repair enzyme. The defect may be attributed, at least in part, to a novel role for BRCA1 in the BER pathway. Overall, these data offer preventive, prognostic, and therapeutic usefulness.


Assuntos
Neoplasias da Mama/genética , Dano ao DNA , Reparo do DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Animais , Proteína BRCA1 , Neoplasias da Mama/enzimologia , Linhagem Celular Tumoral , DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/metabolismo , Genes BRCA1 , Humanos , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Camundongos , Oxirredução
4.
Mol Endocrinol ; 22(2): 263-72, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17932106

RESUMO

The estrogen receptor (ER) protects against debilitating effects of the inflammatory response by inhibiting the proinflammatory transcription factor nuclear factor-kappaB (NFkappaB). Heretofore cAMP response element-binding protein (CREB)-binding protein (CBP) has been suggested to mediate inhibitory cross talk by functioning either as a scaffold that links ER and NFkappaB or as a required cofactor that competitively binds to one or the other transcriptional factor. However, here we demonstrate that ER is recruited to the NFkappaB response element of the MCP-1 (monocyte chemoattractant protein-1) and IL-8 promoters and displaces CBP, but not p65, in the MCF-7 breast cancer cell line. In contrast, ER displaced p65 and associated coregulators from the IL-6 promoter, demonstrating a gene-specific role for CBP in integrating inflammatory and steroid signaling. Further, RNA interference and overexpression studies demonstrated that CBP dosage regulates estrogen-mediated suppression of MCP-1 and IL-8, but not IL-6, gene expression. This work further demonstrates that CBP dosage is a critical regulator of gene-specific signal integration between the ER- and NFkappaB-signaling pathways.


Assuntos
Proteína de Ligação a CREB/metabolismo , Receptor alfa de Estrogênio/metabolismo , NF-kappa B/metabolismo , Northern Blotting , Proteína de Ligação a CREB/genética , Linhagem Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Imunoprecipitação da Cromatina , Ensaio de Desvio de Mobilidade Eletroforética , Estradiol/metabolismo , Receptor alfa de Estrogênio/genética , Imunofluorescência , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoprecipitação , Interleucina-6/genética , Interleucina-8/genética , Modelos Biológicos , Reação em Cadeia da Polimerase , Ligação Proteica , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA