Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 42(3): 823-845, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36696005

RESUMO

Tetrahydrocannabinols (THCs) antagonize the CB1 and CB2 cannabinoid receptors, whose signaling to the endocannabinoid system is essential for controlling cell survival and proliferation as well as psychoactive effects. Most tumor cells express a much higher level of CB1 and CB2; THCs have been investigated as potential cancer therapeutic due to their cannabimimetic properties. To date, THCs have been prescribed as palliative medicine to cancer patients but not as an anticancer modality. Growing evidence of preclinical research demonstrates that THCs reduce tumor progression by stimulating apoptosis and autophagy and inhibiting two significant hallmarks of cancer pathogenesis: metastasis and angiogenesis. However, the degree of their anticancer effects depends on the origin of the tumor site, the expression of cannabinoid receptors on tumor cells, and the dosages and types of THC. This review summarizes the current state of knowledge on the molecular processes that THCs target for their anticancer effects. It also emphasizes the substantial knowledge gaps that should be of concern in future studies. We also discuss the therapeutic effects of THCs and the problems that will need to be addressed in the future. Clarifying unanswered queries is a prerequisite to translating the THCs into an effective anticancer regime.


Assuntos
Canabinoides , Neoplasias , Humanos , Canabinoides/farmacologia , Canabinoides/uso terapêutico , Canabinoides/metabolismo , Receptores de Canabinoides , Endocanabinoides , Neoplasias/tratamento farmacológico
2.
Mater Today Bio ; 13: 100204, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146405

RESUMO

Existing drugs have limited success in managing obesity in human due to their low efficacy and severe side-effects. Surface-modified gold nanoparticles have now received considerable attention of researchers for efficient biomedical applications owing to their superior uptake by cells, biocompatibility, hydrophilicity and non-immunogenicity. Here we prepared Cinnamomum verum derived bioactives-functionalized gold nanoparticles (Au@P-NPs) and assessed their impact on obesity and related immune-metabolic complications in high-fat diet (HFD)-induced obese mice using metabolic experiments along with 16S RNA gene-based gut microbial profiling and faecal microbiota transplantation (FMT). Au@P-NPs treatment prevented weight gain, decreased fat deposition, reduced metabolic inflammation and endotoxaemia in HFD-fed mice. Au@P-NPs-treated group exhibited better glucose tolerance and insulin sensitivity than HFD-fed control mice, and got completely protected against hepatic steatosis. These impacts were related to increased energy expenditure and enhanced Ucp1 expression in the brown adipose tissues of Au@P-NPs-administered animals, which strongly linked with the mRNA expression of the membrane bile acid receptor TGR5. Treatment of HFD-fed animals with Au@P-NPs altered plasma bile acid profile, and increased Akkermansia muciniphila and decreased Lactobacillus populations in the faeces. Au@P-NPs-treated animals revealed altered plasma bile acid profile, and increased Akkermansia muciniphila and decreased Lactobacillus populations in the faeces. FMT experiments showed lesser weight gain and greater energy expenditure in the mice fed with faecal suspension from Au@P-NPs-treated animals than that from HFD-fed mice. These results clearly establish that gold nanoparticles functionalized with bioactive compounds of C. verum have high potential to be an anti-obesity drug.

3.
Semin Cancer Biol ; 86(Pt 3): 706-731, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34062265

RESUMO

Microbial polysaccharides (MPs) offer immense diversity in structural and functional properties. They are extensively used in advance biomedical science owing to their superior biodegradability, hemocompatibility, and capability to imitate the natural extracellular matrix microenvironment. Ease in tailoring, inherent bio-activity, distinct mucoadhesiveness, ability to absorb hydrophobic drugs, and plentiful availability of MPs make them prolific green biomaterials to overcome the significant constraints of cancer chemotherapeutics. Many studies have demonstrated their application to obstruct tumor development and extend survival through immune activation, apoptosis induction, and cell cycle arrest by MPs. Synoptic investigations of MPs are compulsory to decode applied basics in recent inclinations towards cancer regimens. The current review focuses on the anticancer properties of commercially available and newly explored MPs, and outlines their direct and indirect mode of action. The review also highlights cutting-edge MPs-based drug delivery systems to augment the specificity and efficiency of available chemotherapeutics, as well as their emerging role in theranostics.


Assuntos
Materiais Biocompatíveis , Neoplasias , Humanos , Materiais Biocompatíveis/uso terapêutico , Materiais Biocompatíveis/química , Polissacarídeos/uso terapêutico , Polissacarídeos/química , Polissacarídeos/farmacologia , Sistemas de Liberação de Medicamentos , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Microambiente Tumoral
4.
Curr Drug Targets ; 21(13): 1371-1384, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32718286

RESUMO

Defects in brain functions associated with aging and neurodegenerative diseases benefit insignificantly from existing options, suggesting that there is a lack of understanding of pathological mechanisms. Alzheimer's disease (AD) is such a nearly untreatable, allied to age neurological deterioration for which only the symptomatic cure is available and the agents able to mould progression of the disease, is still far away. The altered expression of phosphodiesterases (PDE) and deregulated cyclic nucleotide signaling in AD has provoked a new thought of targeting cyclic nucleotide signaling in AD. Targeting cyclic nucleotides as an intracellular messenger seems to be a viable approach for certain biological processes in the brain and controlling substantial. Whereas, the synthesis, execution, and/or degradation of cyclic nucleotides has been closely linked to cognitive deficits. In relation to cognition, the cyclic nucleotides (cAMP and cGMP) have an imperative execution in different phases of memory, including gene transcription, neurogenesis, neuronal circuitry, synaptic plasticity and neuronal survival, etc. AD is witnessed by impairments of these basic processes underlying cognition, suggesting a crucial role of cAMP/cGMP signaling in AD populations. Phosphodiesterase inhibitors are the exclusive set of enzymes to facilitate hydrolysis and degradation of cAMP and cGMP thereby, maintains their optimum levels initiating it as an interesting target to explore. The present work reviews a neuroprotective and substantial influence of PDE inhibition on physiological status, pathological progression and neurobiological markers of AD in consonance with the intensities of cAMP and cGMP.


Assuntos
Doença de Alzheimer/tratamento farmacológico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , Doença de Alzheimer/metabolismo , Animais , Humanos , Inibidores de Fosfodiesterase/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
5.
Curr Alzheimer Res ; 17(14): 1280-1293, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33602089

RESUMO

Alzheimer's disease (AD) is a persistent neuropathological stipulation manifested in the form of neuronal/synapse demise, the formation of senile plaques, hyperphosphorylated tau tangles, neuroinflammation, and apoptotic cell death. The absence of a therapeutic breakthrough for AD has continued the quest to find a suitable intervention. Apart from various candidates, the cyclic AMPprotein kinase A-cAMP response element-binding protein (cAMP/PKA/CREB) pathway is the most sought-after drug target AD as the bulk of quality literature documents that there is downregulation of cAMP signaling and CREB mediated transcriptional cascade in AD. cAMP signaling is evolutionarily conserved and can be found in all species. cAMP response element-binding protein (CREB) is a ubiquitous and integrally articulated transcription aspect that regulates neuronal growth, neuronal differentiation/ proliferation, synaptic plasticity, neurogenesis, maturation of neurons, spatial memory, longterm memory formation as well as ensures neuronal survival. CREB is a central part of the molecular machinery that has a role in transforming short-term memory to long-term. Besides AD, impairment of CREB signaling has been well documented in addiction, Parkinsonism, schizophrenia, Huntington's disease, hypoxia, preconditioning effects, ischemia, alcoholism, anxiety, and depression. The current work highlights the role and influence of CREB mediated transcriptional signaling on major pathological markers of AD (amyloid ß, neuronal loss, inflammation, apoptosis, etc.). The present work justifies the continuous efforts being made to explore the multidimensional role of CREB and related downstream signaling pathways in cognitive deficits and neurodegenerative complications in general and AD particularly. Moreover, it is reaffirmed that cyclic nucleotide signaling may have vast potential to treat neurodegenerative complications like AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/uso terapêutico , Transdução de Sinais , Proteínas Quinases Dependentes de AMP Cíclico/farmacologia , Humanos
6.
Biochemistry ; 58(6): 582-589, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30520300

RESUMO

We present a new design of mixed-backbone antisense oligonucleotides (ASOs) containing both DNA and peptide nucleic acid (PNA). Previous generations of PNA-DNA chimeras showed low binding affinity, reducing their potential as therapeutics. The addition of a 5'-wing of locked nucleic acid as well as the combination of a modified nucleotide and a PNA monomer at the junction between PNA and DNA yielded high-affinity chimeras. The resulting ASOs demonstrated high serum stability and elicited robust RNase H-mediated cleavage of complementary RNA. These properties allowed the chimeric ASOs to demonstrate high gene silencing efficacy and potency in cells, comparable with those of LNA gapmer ASOs, via both lipid transfection and gymnosis.


Assuntos
Inativação Gênica , Oligonucleotídeos Antissenso/farmacologia , Ácidos Nucleicos Peptídicos/farmacologia , RNA Longo não Codificante/antagonistas & inibidores , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Oligonucleotídeos Antissenso/química , Ácidos Nucleicos Peptídicos/química , RNA Longo não Codificante/genética , Ribonuclease H/metabolismo
8.
Dent Res J (Isfahan) ; 9(3): 345-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-23087743

RESUMO

Hemangiomatous ameloblastoma (HA), which is a rare ameloblastic variant, is presented in a 15-year-old boy in the maxillary right molar region associated with unerupted canine and premolars. Radiologic and computed tomographic analysis was suggestive of cystic lesion. An histology picture confirmed the diagnosis of HA. There are less than eight cases documented in the literature and mostly are in the middle age with mandibular location. This is first ever reported case of HA in a 15-year-old boy with maxillary location. Due to less number of documented cases and no long-term follow-ups, clinical behavior and prognosis of this lesion are uncertain. In this case report, the clinical, histological, and radiographic features of HA are presented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA