Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 25(6): 1156-60, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26990788

RESUMO

Molecular dynamics (MD) simulations have become a central tool for investigating various biophysical questions with atomistic detail. While many different proxies are used to qualify MD force fields, most are based on largely structural parameters such as the root mean square deviation from experimental coordinates or nuclear magnetic resonance (NMR) chemical shifts and residual dipolar couplings. NMR derived Lipari-Szabo squared generalized order parameter (O(2) ) values of amide NH bond vectors of the polypeptide chain were also often employed for refinement and validation. However, with a few exceptions, side chain methyl symmetry axis order parameters have not been incorporated into experimental reference sets. Using a test set of five diverse proteins, the performance of several force fields implemented in the NAMDD simulation package was examined. It was found that simulations employing explicit water implemented using the TIP3 model generally performed significantly better than those using implicit water in reproducing experimental methyl symmetry axis O(2) values. Overall the CHARMM27 force field performs nominally better than two implementations of the Amber force field. It appeared that recent quantum mechanics modifications to side chain torsional angles of leucine and isoleucine in the Amber force field have significantly hindered proper motional modeling for these residues. There remained significant room for improvement as even the best correlations of experimental and simulated methyl group Lipari-Szabo generalized order parameters fall below an R(2) of 0.8.


Assuntos
Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Proteína 1 Supressora da Sinalização de Citocina/química , Humanos , Estrutura Secundária de Proteína
2.
Sci Signal ; 8(384): ra68, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26152695

RESUMO

Nitric oxide (NO) is a signaling intermediate during glutamatergic neurotransmission in the central nervous system (CNS). NO signaling is in part accomplished through cysteine S-nitrosylation, a posttranslational modification by which NO regulates protein function and signaling. In our investigation of the protein targets and functional impact of S-nitrosylation in the CNS under physiological conditions, we identified 269 S-nitrosocysteine residues in 136 proteins in the wild-type mouse brain. The number of sites was significantly reduced in the brains of mice lacking endothelial nitric oxide synthase (eNOS(-/-)) or neuronal nitric oxide synthase (nNOS(-/-)). In particular, nNOS(-/-) animals showed decreased S-nitrosylation of proteins that participate in the glutamate/glutamine cycle, a metabolic process by which synaptic glutamate is recycled or oxidized to provide energy. (15)N-glutamine-based metabolomic profiling and enzymatic activity assays indicated that brain extracts from nNOS(-/-) mice converted less glutamate to glutamine and oxidized more glutamate than those from mice of the other genotypes. GLT1 [also known as EAAT2 (excitatory amino acid transporter 2)], a glutamate transporter in astrocytes, was S-nitrosylated at Cys(373) and Cys(561) in wild-type and eNOS(-/-) mice, but not in nNOS(-/-) mice. A form of rat GLT1 that could not be S-nitrosylated at the equivalent sites had increased glutamate uptake compared to wild-type GLT1 in cells exposed to an S-nitrosylating agent. Thus, NO modulates glutamatergic neurotransmission through the selective, nNOS-dependent S-nitrosylation of proteins that govern glutamate transport and metabolism.


Assuntos
Encéfalo/metabolismo , Cisteína/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Cromatografia Líquida , Cisteína/análogos & derivados , Cisteína/genética , Transportador 2 de Aminoácido Excitatório/genética , Transportador 2 de Aminoácido Excitatório/metabolismo , Glutamina/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Mutação , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Ratos , S-Nitrosotióis/metabolismo , Espectrometria de Massas em Tandem
3.
PLoS One ; 9(11): e112292, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383949

RESUMO

Antigen recognition by T cells relies on the interaction between T cell receptor (TCR) and peptide-major histocompatibility complex (pMHC) at the interface between the T cell and the antigen presenting cell (APC). The pMHC-TCR interaction is two-dimensional (2D), in that both the ligand and receptor are membrane-anchored and their movement is limited to 2D diffusion. The 2D nature of the interaction is critical for the ability of pMHC ligands to trigger TCR. The exact properties of the 2D pMHC-TCR interaction that enable TCR triggering, however, are not fully understood. Here, we altered the 2D pMHC-TCR interaction by tethering pMHC ligands to a rigid plastic surface with flexible poly(ethylene glycol) (PEG) polymers of different lengths, thereby gradually increasing the ligands' range of motion in the third dimension. We found that pMHC ligands tethered by PEG linkers with long contour length were capable of activating T cells. Shorter PEG linkers, however, triggered TCR more efficiently. Molecular dynamics simulation suggested that shorter PEGs exhibit faster TCR binding on-rates and off-rates. Our findings indicate that TCR signaling can be triggered by surface-tethered pMHC ligands within a defined 3D range of motion, and that fast binding rates lead to higher TCR triggering efficiency. These observations are consistent with a model of TCR triggering that incorporates the dynamic interaction between T cell and antigen-presenting cell.


Assuntos
Antígenos de Histocompatibilidade/química , Peptídeos/metabolismo , Polietilenoglicóis/química , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígenos de Histocompatibilidade/metabolismo , Ligantes , Camundongos , Simulação de Dinâmica Molecular , Peso Molecular , Propriedades de Superfície
4.
Cancer Cell ; 17(3): 225-34, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20171147

RESUMO

The somatic mutations in cytosolic isocitrate dehydrogenase 1 (IDH1) observed in gliomas can lead to the production of 2-hydroxyglutarate (2HG). Here, we report that tumor 2HG is elevated in a high percentage of patients with cytogenetically normal acute myeloid leukemia (AML). Surprisingly, less than half of cases with elevated 2HG possessed IDH1 mutations. The remaining cases with elevated 2HG had mutations in IDH2, the mitochondrial homolog of IDH1. These data demonstrate that a shared feature of all cancer-associated IDH mutations is production of the oncometabolite 2HG. Furthermore, AML patients with IDH mutations display a significantly reduced number of other well characterized AML-associated mutations and/or associated chromosomal abnormalities, potentially implicating IDH mutation in a distinct mechanism of AML pathogenesis.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Leucemia Mieloide Aguda/genética , Proliferação de Células , Humanos , Isocitrato Desidrogenase/química , Isocitratos/química , Isocitratos/metabolismo , Leucemia Mieloide Aguda/metabolismo , Mitocôndrias/metabolismo , Mutação , Células Tumorais Cultivadas
5.
Biophys Chem ; 141(2-3): 222-30, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19251353

RESUMO

The influence of proteins and solutes on hysteresis of freezing and melting of water was measured by infrared (IR) spectroscopy. Of the solutes examined, poly-L-arginine and flounder antifreeze protein produced the largest freezing point depression of water, with little effect on the melting temperature. Poly-L-lysine, poly-L-glutamate, cytochrome c and bovine serum albumin had less effect on the freezing of water. Small compounds used to mimic non-polar (trimethylamine N-oxide, methanol), positively charged (guanidinium chloride, NH(4)Cl, urea) and negatively charged (Na acetate) groups on protein surfaces were also examined. These molecules and ions depress water's freezing point and the melting profiles became broad. Since infrared absorption measures both bulk solvent and solvent bound to the solutes, this result is consistent with solutes interacting with liquid water. The amide I absorption bands of antifreeze protein and poly-L-arginine do not detectably change with the phase transition of water. An interpretation is that the antifreeze protein and poly-L-arginine order liquid water such that the water around the group is ice-like.


Assuntos
Proteínas Anticongelantes/química , Proteínas/química , Água/química , Cloreto de Amônio/química , Animais , Bovinos , Citocromos c/química , Linguado , Congelamento , Ácido Glutâmico/química , Guanidina/química , Metanol/química , Metilaminas/química , Peptídeos/química , Polilisina/química , Soroalbumina Bovina/química , Acetato de Sódio/química , Espectrofotometria Infravermelho , Temperatura , Temperatura de Transição , Ureia/química
6.
J Magn Reson ; 156(1): 104-12, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12081447

RESUMO

Electron paramagnetic resonance (EPR) is often used in the study of the orientation and dynamics of proteins. However, there are two major obstacles in the interpretation of EPR signals: (a) most spin labels are not fully immobilized by the protein, hence it is difficult to distinguish the mobility of the label with respect to the protein from the reorientation of the protein itself; (b) even in cases where the label is fully immobilized its orientation with respect to the protein is not known, which prevents interpretation of probe reorientation in terms of protein reorientation. We have developed a computational strategy for determining whether or not a spin label is immobilized and, if immobilized, predicting its conformation within the protein. The method uses a Monte Carlo minimization algorithm to search the conformational space of labels within known atomic level structures of proteins. To validate the method a series of spin labels of varying size and geometry were docked to sites on the myosin head catalytic and regulatory domains. The predicted immobilization and conformation compared well with the experimentally determined mobility and orientation of the label. Thus, probes can now be targeted to report on various modes of molecular dynamics: immobilized probes to report on protein backbone and domain dynamics or floppy probes to report on the extent of steric restriction experienced by the side chain.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Método de Monte Carlo , Miosinas/química , Animais , Anisotropia , Galinhas , Modelos Moleculares , Conformação Proteica , Marcadores de Spin
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA