Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 153(2): 024121, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668926

RESUMO

The problem of flickering trajectories in standard kinetic Monte Carlo (kMC) simulations prohibits sampling of the transition path ensembles (TPEs) on Markovian networks representing many slow dynamical processes of interest. In the present contribution, we overcome this problem using knowledge of the metastable macrostates, determined by an unsupervised community detection algorithm, to perform enhanced sampling kMC simulations. We implement two accelerated kMC methods to simulate the nonequilibrium stochastic dynamics on arbitrary Markovian networks, namely, weighted ensemble (WE) sampling and kinetic path sampling (kPS). WE-kMC utilizes resampling in pathway space to maintain an ensemble of representative trajectories covering the state space, and kPS utilizes graph transformation to simplify the description of an escape trajectory from a trapping energy basin. Both methods sample individual trajectories governed by the linear master equation with the correct statistical frequency. We demonstrate that they allow for efficient estimation of the time-dependent occupation probability distributions for the metastable macrostates, and of TPE statistics, such as committor functions and first passage time distributions. kPS is particularly attractive, since its efficiency is essentially independent of the degree of metastability, and we suggest how the algorithm could be coupled with other enhanced sampling methodologies. We illustrate our approach with results for a network representing the folding transition of a tryptophan zipper peptide, which exhibits a separation of characteristic timescales. We highlight some salient features of the dynamics, most notably, strong deviations from two-state behavior, and the existence of multiple competing mechanisms.


Assuntos
Cadeias de Markov , Peptídeos/química , Algoritmos , Motivos de Aminoácidos , Cinética , Modelos Químicos , Método de Monte Carlo , Dobramento de Proteína
2.
Int J Gynecol Cancer ; 28(3): 472-478, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29465507

RESUMO

OBJECTIVES: The aim of this study was to investigate the relationship between BRCA1 and mitotic arrest deficiency protein 2 (MAD2) protein expression, as determined by immunohistochemistry, and clinical outcomes in epithelial ovarian carcinoma (EOC). METHODS: A tissue microarray consisting of 94 formalin-fixed paraffin-embedded EOC with fully matched clinicopathological data were immunohistochemically stained with anti-BRCA1 and anti-MAD2 antibodies. The cores were scored in a semiquantitative manner evaluating nuclear staining intensity and extent. Coexpression of BRCA1 and MAD2 was evaluated, and patient survival analyses were undertaken. RESULTS: Coexpression of BRCA1 and MAD2 was assessed in 94 EOC samples, and survival analysis was performed on 65 high-grade serous carcinomas (HGSCs). There was a significant positive correlation between BRCA1 and MAD2 expression in this patient cohort (P < 0.0001). Both low BRCA1 and low MAD2 are independently associated with overall survival because of HGSC. Low coexpression of BRCA1 and MAD2 was also significantly associated with overall survival and was driven by BRCA1 expression. CONCLUSION: BRCA1 and MAD2 expressions are strongly correlated in EOC, but BRCA1 expression remains the stronger prognostic factor in HGSC.


Assuntos
Proteína BRCA1/biossíntese , Cistadenocarcinoma Seroso/metabolismo , Proteínas Mad2/biossíntese , Neoplasias Ovarianas/metabolismo , Biomarcadores Tumorais/biossíntese , Cistadenocarcinoma Seroso/patologia , Feminino , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , Neoplasias Ovarianas/patologia , Inclusão em Parafina , Estudos Retrospectivos , Análise Serial de Tecidos
3.
Oncotarget ; 8(39): 66061-66074, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029492

RESUMO

The t(12;21) (p13;q22) chromosomal translocation resulting in the ETV6/RUNX1 fusion gene is the most frequent structural cytogenetic abnormality in children with acute lymphoblastic leukemia (ALL). The erythropoietin receptor (EPOR), usually associated with erythroid progenitor cells, is highly expressed in ETV6/RUNX1 positive cases compared to other B-lineage ALL subtypes. Gene expression analysis of a microarray database and direct quantitative analysis of patient samples revealed strong correlation between EPOR and GATA2 expression in ALL, and higher expression of GATA2 in t(12;21) patients. The mechanism of EPOR regulation was mainly investigated using two B-ALL cell lines: REH, which harbor and express the ETV6/RUNX1 fusion gene; and NALM-6, which do not. Expression of EPOR was increased in REH cells compared to NALM-6 cells. Moreover, of the six GATA family members only GATA2 was differentially expressed with substantially higher levels present in REH cells. GATA2 was shown to bind to the EPOR 5'-UTR in REH, but did not bind in NALM-6 cells. Overexpression of GATA2 led to an increase in EPOR expression in REH cells only, indicating that GATA2 regulates EPOR but is dependent on the cellular context. Both EPOR and GATA2 are hypomethylated and associated with increased mRNA expression in REH compared to NALM-6 cells. Decitabine treatment effectively reduced methylation of CpG sites in the GATA2 promoter leading to increased GATA2 expression in both cell lines. Although Decitabine also reduced an already low level of methylation of the EPOR in NALM-6 cells there was no increase in EPOR expression. Furthermore, EPOR and GATA2 are regulated post-transcriptionally by miR-362 and miR-650, respectively. Overall our data show that EPOR expression in t(12;21) B-ALL cells, is regulated by GATA2 and is mediated through epigenetic, transcriptional and post-transcriptional mechanisms, contingent upon the genetic subtype of the disease.

4.
Cancer Med ; 4(5): 745-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25684390

RESUMO

Annually, ovarian cancer (OC) affects 240,000 women worldwide and is the most lethal gynecological malignancy. High-grade serous OC (HGSOC) is the most common and aggressive OC subtype, characterized by widespread genome changes and chromosomal instability and is consequently poorly responsive to chemotherapy treatment. The objective of this study was to investigate the role of the microRNA miR-433 in the cellular response of OC cells to paclitaxel treatment. We show that stable miR-433 expression in A2780 OC cells results in the induction of cellular senescence demonstrated by morphological changes, downregulation of phosphorylated retinoblastoma (p-Rb), and an increase in ß-galactosidase activity. Furthermore, in silico analysis identified four possible miR-433 target genes associated with cellular senescence: cyclin-dependent kinase 6 (CDK6), MAPK14, E2F3, and CDKN2A. Mechanistically, we demonstrate that downregulation of p-Rb is attributable to a miR-433-dependent downregulation of CDK6, establishing it as a novel miR-433 associated gene. Interestingly, we show that high miR-433 expressing cells release miR-433 into the growth media via exosomes which in turn can induce a senescence bystander effect. Furthermore, in relation to a chemotherapeutic response, quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that only PEO1 and PEO4 OC cells with the highest miR-433 expression survive paclitaxel treatment. Our data highlight how the aberrant expression of miR-433 can adversely affect intracellular signaling to mediate chemoresistance in OC cells by driving cellular senescence.


Assuntos
Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Resistencia a Medicamentos Antineoplásicos/genética , Expressão Gênica , MicroRNAs/genética , Neoplasias Ovarianas/genética , Paclitaxel/farmacologia , Apoptose/genética , Linhagem Celular Tumoral , Biologia Computacional , Quinase 6 Dependente de Ciclina/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Interferência de RNA , RNA Mensageiro/genética , Microambiente Tumoral/genética
5.
Oncotarget ; 5(18): 8803-15, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25301728

RESUMO

HOX genes are master regulators of organ morphogenesis and cell differentiation during embryonic development, and continue to be expressed throughout post-natal life. To test the hypothesis that HOX genes are dysregulated in head and neck squamous cell carcinoma (HNSCC) we defined their expression profile, and investigated the function, transcriptional regulation and clinical relevance of a subset of highly expressed HOXD genes. Two HOXD genes, D10 and D11, showed strikingly high levels in HNSCC cell lines, patient tumor samples and publicly available datasets. Knockdown of HOXD10 in HNSCC cells caused decreased proliferation and invasion, whereas knockdown of HOXD11 reduced only invasion. POU2F1 consensus sequences were identified in the 5' DNA of HOXD10 and D11. Knockdown of POU2F1 significantly reduced expression of HOXD10 and D11 and inhibited HNSCC proliferation. Luciferase reporter constructs of the HOXD10 and D11 promoters confirmed that POU2F1 consensus binding sites are required for optimal promoter activity. Utilizing patient tumor samples a significant association was found between immunohistochemical staining of HOXD10 and both the overall and the disease-specific survival, adding further support that HOXD10 is dysregulated in head and neck cancer. Additional studies are now warranted to fully evaluate HOXD10 as a prognostic tool in head and neck cancers.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Proliferação de Células , Neoplasias de Cabeça e Pescoço/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 1 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/mortalidade , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/mortalidade , Neoplasias de Cabeça e Pescoço/patologia , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Fator 1 de Transcrição de Octâmero/genética , Fenótipo , Prognóstico , Regiões Promotoras Genéticas , Modelos de Riscos Proporcionais , Interferência de RNA , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fatores de Tempo , Fatores de Transcrição/genética , Transcrição Gênica , Transfecção
6.
J Pathol ; 231(3): 378-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24308033

RESUMO

Deregulated NOTCH1 has been reported in lymphoid leukaemia, although its role in chronic myeloid leukaemia (CML) is not well established. We previously reported BCR-ABL down-regulation of a novel haematopoietic regulator, CCN3, in CML; CCN3 is a non-canonical NOTCH1 ligand. This study characterizes the NOTCH1­CCN3 signalling axis in CML. In K562 cells, BCR-ABL silencing reduced full-length NOTCH1 (NOTCH1-FL) and inhibited the cleavage of NOTCH1 intracellular domain (NOTCH1-ICD), resulting in decreased expression of the NOTCH1 targets c-MYC and HES1. K562 cells stably overexpressing CCN3 (K562/CCN3) or treated with recombinant CCN3(rCCN3) showed a significant reduction in NOTCH1 signalling (> 50% reduction in NOTCH1-ICD, p < 0.05).Gamma secretase inhibitor (GSI), which blocks NOTCH1 signalling, reduced K562/CCN3 colony formation but increased that of K562/control cells. GSI combined with either rCCN3 or imatinib reduced K562 colony formation with enhanced reduction of NOTCH1 signalling observed with combination treatments. We demonstrate an oncogenic role for NOTCH1 in CML and suggest that BCR-ABL disruption of NOTCH1­CCN3 signalling contributes to the pathogenesis of CML.


Assuntos
Proteínas de Fusão bcr-abl/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Antineoplásicos/farmacologia , Benzamidas/farmacologia , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mesilato de Imatinib , Células K562/efeitos dos fármacos , Células K562/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transfecção
7.
Oncotarget ; 4(7): 1103-16, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23867201

RESUMO

The tumour microenvironment has an important role in cancer progression and recent reports have proposed that stromal AKT is activated and regulates tumourigenesis and invasion. We have shown, by immuno-fluorescent analysis of oro-pharyngeal cancer biopsies, an increase in AKT activity in tumour associated stromal fibroblasts compared to normal stromal fibroblasts. Using organotypic raft co-cultures, we show that activation of stromal AKT can induce the invasion of keratinocytes expressing the HPV type 16 E6 and E7 proteins, in a Keratinocyte Growth Factor (KGF) dependent manner. By depleting stromal fibroblasts of each of the three AKT isoforms independently, or through using isoform specific inhibitors, we determined that stromal AKT2 is an essential regulator of invasion and show in oro-pharyngeal cancers that AKT2 specific phosphorylation events are also identified in stromal fibroblasts. Depletion of stromal AKT2 inhibits epithelial invasion through activating a protective pathway counteracting KGF mediated invasions. AKT2 depletion in fibroblasts stimulates the cleavage and release of IL1B from stromal fibroblasts resulting in down-regulation of the KGF receptor (fibroblast growth factor receptor 2B (FGFR2B)) expression in the epithelium. We also show that high IL1B is associated with increased overall survival in a cohort of patients with oro-pharyngeal cancers. Our findings demonstrate the importance of stromal derived growth factors and cytokines in regulating the process of tumour cell invasion.


Assuntos
Fibroblastos/enzimologia , Fibroblastos/patologia , Neoplasias Orofaríngeas/enzimologia , Neoplasias Orofaríngeas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Células Cultivadas , Progressão da Doença , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Humanos , Queratinócitos/enzimologia , Queratinócitos/patologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células Estromais/enzimologia , Células Estromais/patologia , Microambiente Tumoral
8.
Stem Cells ; 31(7): 1434-45, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23592435

RESUMO

The incidence of refractory acute myeloid leukemia (AML) is on the increase due in part to an aging population that fails to respond to traditional therapies. High throughput genomic analysis promises better diagnosis, prognosis, and therapeutic intervention based on improved patient stratification. Relevant preclinical models are urgently required to advance drug development in this area. The collaborating oncogenes, HOXA9 and MEIS1, are frequently co-overexpressed in cytogenetically normal AML (CN-AML), and a conditional transplantation mouse model was developed that demonstrated oncogene dependency and expression levels comparable to CN-AML patients. Integration of gene signatures obtained from the mouse model and a cohort of CN-AML patients using statistically significant connectivity map analysis identified Entinostat as a drug with the potential to alter the leukemic condition toward the normal state. Ex vivo treatment of leukemic cells, but not age-matched normal bone marrow controls, with Entinostat validated the gene signature and resulted in reduced viability in liquid culture, impaired colony formation, and loss of the leukemia initiating cell. Furthermore, in vivo treatment with Entinostat resulted in prolonged survival of leukemic mice. This study demonstrates that the HDAC inhibitor Entinostat inhibits disease maintenance and prolongs survival in a clinically relevant murine model of cytogenetically normal AML.


Assuntos
Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Piridinas/farmacologia , Animais , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Imunofenotipagem , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA