Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675477

RESUMO

The alternative pathway of the complement system is implicated in the etiology of age-related macular degeneration (AMD). Complement depletion with pegcetacoplan and avacincaptad pegol are FDA-approved treatments for geographic atrophy in AMD that, while effective, have clinically observed risks of choroidal neovascular (CNV) conversion, optic neuritis, and retinal vasculitis, leaving room for other equally efficacious but safer therapeutics, including Poly Sialic acid (PSA) nanoparticle (PolySia-NP)-actuated complement factor H (CFH) alternative pathway inhibition. Our previous paper demonstrated that PolySia-NP inhibits pro-inflammatory polarization and cytokine release. Here, we extend these findings by investigating the therapeutic potential of PolySia-NP to attenuate the alternative complement pathway. First, we show that PolySia-NP binds CFH and enhances affinity to C3b. Next, we demonstrate that PolySia-NP treatment of human serum suppresses alternative pathway hemolytic activity and C3b deposition. Further, we show that treating human macrophages with PolySia-NP is non-toxic and reduces markers of complement activity. Finally, we describe PolySia-NP-treatment-induced decreases in neovascularization and inflammatory response in a laser-induced CNV mouse model of neovascular AMD. In conclusion, PolySia-NP suppresses alternative pathway complement activity in human serum, human macrophage, and mouse CNV without increasing neovascularization.

2.
Nat Commun ; 15(1): 2007, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453922

RESUMO

Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.


Assuntos
Neoplasias , Receptores Fc , Camundongos , Animais , Humanos , Imunoglobulina G , Meia-Vida , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Camundongos Transgênicos , Anticorpos Monoclonais , Antígenos de Histocompatibilidade Classe I/metabolismo , Neoplasias/terapia , Neoplasias/tratamento farmacológico
3.
Front Immunol ; 13: 975676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36110842

RESUMO

Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci evade killing by complement by binding factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized as a single chain. Gonococci bind FH through domains 6 and 7, and C-terminal domains 18 through 20. Previously, we showed that a chimeric protein comprising (from the N- to C-terminus) FH domains 18-20 (containing a point mutation in domain 19 to prevent lysis of host cells) fused to human IgG1 Fc (called FH*/Fc1) killed gonococci in a complement-dependent manner and reduced the duration and bacterial burden in the mouse vaginal colonization model of gonorrhea. Considering the N. gonorrhoeae-binding FH domains 18-20 are C-terminal in native FH, we reasoned that positioning Fc N-terminal to FH* (Fc1/FH*) would improve binding and bactericidal activity. Although both molecules bound gonococci similarly, Fc1/FH* displayed a 5-fold lower IC50 (the concentration required for 50% killing in complement-dependent bactericidal assays) than FH*/Fc1. To further increase complement activation, we replaced human IgG1 Fc in Fc1/FH* with Fc from human IgG3, the most potent complement-activating IgG subclass, to obtain Fc3/FH*. Bactericidal activity was further increased ~2.3-fold in Fc3/FH* compared to Fc1/FH*. Fc3/FH* killed (defined by <50% survival) 45/45 (100%) diverse PorB1B-expessing gonococci, but only 2/15 PorB1A-expressing isolates, in a complement-dependent manner. Decreased Fc3/FH* binding accounted for the limited activity against PorB1A strains. Fc3/FH* was efficacious against all four tested PorB1B gonococcal strains in the mouse vaginal colonization model when administered at a dose of 5 µg intravaginally, daily. Furthermore, Fc3/FH* retained bactericidal activity when reconstituted following lyophilization or spray-drying, suggesting feasibility for formulation into intravaginal rings. In conclusion, Fc3/FH* represents a promising prophylactic immunotherapeutic against multidrug-resistant gonococci.


Assuntos
Gonorreia , Neisseria gonorrhoeae , Animais , Fator H do Complemento/metabolismo , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Feminino , Gonorreia/tratamento farmacológico , Humanos , Imunoglobulina G/metabolismo , Camundongos , Neisseria gonorrhoeae/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia
4.
Front Immunol ; 11: 583305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193396

RESUMO

Novel therapeutics against the global threat of multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococci possess several mechanisms to evade killing by human complement, including binding of factor H (FH), a key inhibitor of the alternative pathway. FH comprises 20 short consensus repeat (SCR) domains organized in a head-to-tail manner as a single chain. N. gonorrhoeae binds two regions in FH; domains 6 and 7 and domains 18 through 20. We designed a novel anti-infective immunotherapeutic molecule that fuses domains 18-20 of FH containing a D-to-G mutation in domain 19 at position 1119 (called FH*) with human IgG1 Fc. FH*/Fc retained binding to gonococci but did not lyse human erythrocytes. Expression of FH*/Fc in tobacco plants was undertaken as an alternative, economical production platform. FH*/Fc was expressed in high yields in tobacco plants (300-600 mg/kg biomass). The activities of plant- and CHO-cell produced FH*/Fc against gonococci were similar in vitro and in the mouse vaginal colonization model of gonorrhea. The addition of flexible linkers [e.g., (GGGGS)2 or (GGGGS)3] between FH* and Fc improved the bactericidal efficacy of FH*/Fc 2.7-fold. The linkers also improved PMN-mediated opsonophagocytosis about 11-fold. FH*/Fc with linker also effectively reduced the duration and burden of colonization of two gonococcal strains tested in mice. FH*/Fc lost efficacy: i) in C6-/- mice (no terminal complement) and ii) when Fc was mutated to abrogate complement activation, suggesting that an intact complement was necessary for FH*/Fc function in vivo. In summary, plant-produced FH*/Fc represent promising prophylactic or adjunctive immunotherapeutics against multidrug-resistant gonococci.


Assuntos
Resistência a Múltiplos Medicamentos/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Neisseria gonorrhoeae/imunologia , Nicotiana/genética , Plantas Geneticamente Modificadas , Animais , Antibacterianos/farmacologia , Fator H do Complemento/genética , Fator H do Complemento/imunologia , Gonorreia , Humanos , Imunoglobulina G , Imunoterapia , Camundongos , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes de Fusão/imunologia
5.
mBio ; 10(6)2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31690678

RESUMO

The global spread of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a public health emergency. With limited antibiotic treatment options, there is an urgent need for development of a safe and effective vaccine against gonorrhea. Previously, we constructed a prototype vaccine candidate comprising a peptide mimic (mimitope) of a glycan epitope on gonococcal lipooligosaccharide (LOS), recognized by monoclonal antibody 2C7. The 2C7 epitope is (i) broadly expressed as a gonococcal antigenic target in human infection, (ii) a critical requirement for gonococcal colonization in the experimental setting, and (iii) a virulence determinant that is maintained and expressed by gonococci. Here, we have synthesized to >95% purity through a relatively facile and economical process a tetrapeptide derivative of the mimitope that was cyclized through a nonreducible thioether bond, thereby rendering the compound homogeneous and stable. This vaccine candidate, called TMCP2, when administered at 0, 3, and 6 weeks to BALB/c mice at either 50, 100 or 200 µg/dose in combination with glucopyranosyl lipid A-stable oil-in-water nanoemulsion (GLA-SE; a Toll-like receptor 4 and TH1-promoting adjuvant), elicited bactericidal IgG and reduced colonization levels of gonococci in experimentally infected mice while accelerating clearance by each of two different gonococcal strains. Similarly, a 3-dose biweekly schedule (50 µg TMCP2/dose) was also effective in mice. We have developed a gonococcal vaccine candidate that can be scaled up and produced economically to a high degree of purity. The candidate elicits bactericidal antibodies and is efficacious in a preclinical experimental infection model.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics. The incidence of gonorrhea is also sharply increasing. A safe and effective antigonococcal vaccine is urgently needed. Lipooligosaccharide (LOS), the most abundant outer membrane molecule, is indispensable for gonococcal pathogenesis. A glycan epitope on LOS that is recognized by monoclonal antibody (MAb) 2C7 (called the 2C7 epitope) is expressed almost universally by gonococci in vivo Previously, we identified a peptide mimic (mimitope) of the 2C7 epitope, which when configured as an octamer and used as an immunogen, attenuated colonization of mice by gonococci. Here, a homogenous, stable tetrameric derivative of the mimitope, when combined with a TH1-promoting adjuvant and used as an immunogen, also effectively attenuates gonococcal colonization of mice. This candidate peptide vaccine can be produced economically, an important consideration for gonorrhea, which affects socioeconomically underprivileged populations disproportionately, and represents an important advance in the development of a gonorrhea vaccine.


Assuntos
Vacinas Bacterianas/imunologia , Lipopolissacarídeos/imunologia , Neisseria gonorrhoeae/imunologia , Peptídeos/imunologia , Animais , Anticorpos Antibacterianos/imunologia , Anticorpos Monoclonais/imunologia , Antígenos de Bactérias/imunologia , Epitopos/imunologia , Feminino , Gonorreia/imunologia , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C
6.
Front Immunol ; 10: 321, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30873172

RESUMO

The increasing incidence of gonorrhea worldwide and the global spread of multidrug-resistant strains of Neisseria gonorrhoeae, constitute a public health emergency. With dwindling antibiotic treatment options, there is an urgent need to develop safe and effective vaccines. Gonococcal lipooligosaccharides (LOSs) are potential vaccine candidates because they are densely represented on the bacterial surface and are readily accessible as targets of adaptive immunity. Less well-understood is whether LOSs evoke protective immune responses. Although gonococcal LOS-derived oligosaccharides (OSs) are major immune targets, often they undergo phase variation, a feature that seemingly makes LOS less desirable as a vaccine candidate. However, the identification of a gonococcal LOS-derived OS epitope, called 2C7, that is: (i) a broadly expressed gonococcal antigenic target in human infection; (ii) a virulence determinant, that is maintained by the gonococcus and (iii) a critical requirement for gonococcal colonization in the experimental setting, circumvents its limitation as a potential vaccine candidate imposed by phase variation. Difficulties in purifying structurally intact OSs from LOSs led to "conversion" of the 2C7 epitope into a peptide mimic that elicited cross-reactive IgG anti-OS antibodies that also possess complement-dependent bactericidal activity against gonococci. Mice immunized with the 2C7 peptide mimic clear vaginal colonization more rapidly and reduce gonococcal burdens. 2C7 vaccine satisfies criteria that are desirable in a gonococcal vaccine candidate: broad representation of the antigenic target, service as a virulence determinant that is also critical for organism survival in vivo and elicitation of broadly cross-reactive IgG bactericidal antibodies when used as an immunogen.


Assuntos
Vacinas Bacterianas , Lipopolissacarídeos/imunologia , Neisseria gonorrhoeae/imunologia , Animais , Proteínas do Sistema Complemento/imunologia , Epitopos/imunologia , Gonorreia/prevenção & controle , Humanos , Lipopolissacarídeos/química , Peptídeos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA