Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38542460

RESUMO

Malignant hyperthermia (MH) is a pharmacogenetic condition of skeletal muscle that manifests in hypermetabolic responses upon exposure to volatile anaesthetics. This condition is caused primarily by pathogenic variants in the calcium-release channel RYR1, which disrupts calcium signalling in skeletal muscle. However, our understanding of MH genetics is incomplete, with no variant identified in a significant number of cases and considerable phenotype diversity. In this study, we applied a transcriptomic approach to investigate the genome-wide gene expression in MH-susceptible cases using muscle biopsies taken for diagnostic testing. Baseline comparisons between muscle from MH-susceptible individuals (MHS, n = 8) and non-susceptible controls (MHN, n = 4) identified 822 differentially expressed genes (203 upregulated and 619 downregulated) with significant enrichment in genes associated with oxidative phosphorylation (OXPHOS) and fatty acid metabolism. Investigations of 10 OXPHOS target genes in a larger cohort (MHN: n = 36; MHS: n = 36) validated the reduced expression of ATP5MD and COQ6 in MHS samples, but the remaining 8 selected were not statistically significant. Further analysis also identified evidence of a sex-linked effect in SDHB and UQCC3 expression, and a difference in ATP5MD expression across individuals with MH sub-phenotypes (trigger from in vitro halothane exposure only, MHSh (n = 4); trigger to both in vitro halothane and caffeine exposure, MHShc (n = 4)). Our data support a link between MH-susceptibility and dysregulated gene expression associated with mitochondrial bioenergetics, which we speculate plays a role in the phenotypic variability observed within MH.


Assuntos
Hipertermia Maligna , Humanos , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Halotano/farmacologia , Halotano/metabolismo , Fosforilação Oxidativa , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Suscetibilidade a Doenças/metabolismo , Biópsia , Expressão Gênica , Contração Muscular , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas de Transporte/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38003313

RESUMO

Exertional heat illness (EHI) is an occupational health hazard for athletes and military personnel-characterised by the inability to thermoregulate during exercise. The ability to thermoregulate can be studied using a standardised heat tolerance test (HTT) developed by The Institute of Naval Medicine. In this study, we investigated whole blood gene expression (at baseline, 2 h post-HTT and 24 h post-HTT) in male subjects with either a history of EHI or known susceptibility to malignant hyperthermia (MHS): a pharmacogenetic condition with similar clinical phenotype. Compared to healthy controls at baseline, 291 genes were differentially expressed in the EHI cohort, with functional enrichment in inflammatory response genes (up to a four-fold increase). In contrast, the MHS cohort featured 1019 differentially expressed genes with significant down-regulation of genes associated with oxidative phosphorylation (OXPHOS). A number of differentially expressed genes in the inflammation and OXPHOS pathways overlapped between the EHI and MHS subjects, indicating a common underlying pathophysiology. Transcriptome profiles between subjects who passed and failed the HTT (based on whether they achieved a plateau in core temperature or not, respectively) were not discernable at baseline, and HTT was shown to elevate inflammatory response gene expression across all clinical phenotypes.


Assuntos
Transtornos de Estresse por Calor , Hipertermia Maligna , Humanos , Masculino , Transcriptoma , Transtornos de Estresse por Calor/genética , Exercício Físico/fisiologia , Sobreviventes
3.
Nat Commun ; 13(1): 3403, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697689

RESUMO

Exertional heat illness (EHI) and malignant hyperthermia (MH) are life threatening conditions associated with muscle breakdown in the setting of triggering factors including volatile anesthetics, exercise, and high environmental temperature. To identify new genetic variants that predispose to EHI and/or MH, we performed genomic sequencing on a cohort with EHI/MH and/or abnormal caffeine-halothane contracture test. In five individuals, we identified rare, pathogenic heterozygous variants in ASPH, a gene encoding junctin, a regulator of excitation-contraction coupling. We validated the pathogenicity of these variants using orthogonal pre-clinical models, CRISPR-edited C2C12 myotubes and transgenic zebrafish. In total, we demonstrate that ASPH variants represent a new cause of EHI and MH susceptibility.


Assuntos
Transtornos de Estresse por Calor , Hipertermia Maligna , Animais , Cafeína/farmacologia , Proteínas de Ligação ao Cálcio , Humanos , Hipertermia Maligna/genética , Proteínas de Membrana , Oxigenases de Função Mista , Contração Muscular , Fibras Musculares Esqueléticas , Proteínas Musculares , Peixe-Zebra/genética
4.
J Biol Chem ; 295(45): 15226-15235, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32826313

RESUMO

Mutations in the skeletal muscle ryanodine receptor gene (RYR1) can cause susceptibility to malignant hyperthermia (MH), a potentially lethal genetic condition triggered by volatile anesthetics. MH is associated with hypermetabolism, which has directed research interest into oxidative phosphorylation and muscle bioenergetics. The most common cause of MH in the United Kingdom is the c.7300G>A RYR1 variant, which is present in ∼16% of MH families. Our study focuses on the MH susceptible G2435R-RYR1 knock-in mouse model, which is the murine equivalent of the human c.7300G>A genotype. Using a combination of transcriptomics, protein expression, and functional analysis, we investigated adult muscle fiber bioenergetics in this mouse model. RNA-Seq data showed reduced expression of genes associated with mitochondria and fatty acid oxidation in RYR1 mutants when compared with WT controls. Mitochondrial function was assessed by measuring oxygen consumption rates in permeabilized muscle fibers. Comparisons between WT and homozygous G2435R-RYR1 mitochondria showed a significant increase in complex I-facilitated oxidative phosphorylation in mutant muscle. Furthermore, we observed a gene-dose-specific increase in reactive oxygen species production in G2435R-RYR1 muscle fibers. Collectively, these findings provide evidence of metabolic defects in G2435R-RYR1 knock-in mouse muscle under basal conditions. Differences in metabolic profile could be the result of differential gene expression in metabolic pathways, in conjunction with mitochondrial damage accumulated from chronic exposure to increased oxidative stress.


Assuntos
Hipertermia/genética , Hipertermia/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Feminino , Masculino , Camundongos
5.
Front Genet ; 11: 37, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174957

RESUMO

The ryanodine receptor mediates intracellular calcium ion release with excitation of nerve and muscle cells. Ryanodine receptor missense variants cause a number of myopathologies, such as malignant hyperthermia, and have been linked with various neuropathologies, including Alzheimer's disease. We characterized the consequences of ryanodine receptor variants in vivo. Eight Caenorhabditis elegans strains, with ryanodine receptor modifications equivalent to human myopathic RYR1 variants, were generated by genome editing. In humans, these variants are rare and confer sensitivity to the inhalational anaesthetic halothane when heterozygous. Increased sensitivity to halothane was found in both homozygous and heterozygous C. elegans. Close analysis revealed distinct subtle locomotion defects, due to the different single amino acid residue changes, even in the absence of the external triggering agent. Distinct pre- and postsynaptic consequences of the variants were characterized through the responses to cholinergic pharmacological agents. The range of phenotypes reflects the complexity of the regulatory inputs to the ryanodine receptor and the criticality of the calcium ion channel opening properties, in different cell types and with age. Ryanodine receptors with these single amino acid residue changes still function as calcium ion channels, but with altered properties which are likely to have subtle consequences for human carriers of such variants. The long-term consequences of subtly altered calcium ion signalling could be cumulative and may be focussed in the smaller nerve cells rather than the more robust muscle cells. It was important to assess phenotypes in vivo to properly appreciate consequences for a whole organism.

6.
J Med Genet ; 57(8): 531-541, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32054689

RESUMO

BACKGROUND: We aimed to identify rare (minor allele frequency ≤1%), potentially pathogenic non-synonymous variants in a well-characterised cohort with a clinical history of exertional heat illness (EHI) or exertional rhabdomyolysis (ER). The genetic link between malignant hyperthermia (MH) and EHI was investigated due to their phenotypic overlap. METHODS: The coding regions of 38 genes relating to skeletal muscle calcium homeostasis or exercise intolerance were sequenced in 64 patients (mostly military personnel) with a history of EHI, or ER and who were phenotyped using skeletal muscle in vitro contracture tests. We assessed the pathogenicity of variants using prevalence data, in silico analysis, phenotype and segregation evidence and by review of the literature. RESULTS: We found 51 non-polymorphic, potentially pathogenic variants in 20 genes in 38 patients. Our data indicate that RYR1 p.T3711M (previously shown to be likely pathogenic for MH susceptibility) and RYR1 p.I3253T are likely pathogenic for EHI. PYGM p.A193S was found in 3 patients with EHI, which is significantly greater than the control prevalence (p=0.000025). We report the second case of EHI in which a missense variant at CACNA1S p.R498 has been found. Combinations of rare variants in the same or different genes are implicated in EHI. CONCLUSION: We confirm a role of RYR1 in the heritability of EHI as well as ER but highlight the likely genetic heterogeneity of these complex conditions. We propose defects, or combinations of defects, in skeletal muscle calcium homeostasis, oxidative metabolism and membrane excitability are associated with EHI.


Assuntos
Canais de Cálcio Tipo L/genética , Transtornos de Estresse por Calor/genética , Rabdomiólise/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sinalização do Cálcio/genética , Feminino , Predisposição Genética para Doença , Transtornos de Estresse por Calor/epidemiologia , Transtornos de Estresse por Calor/patologia , Homeostase , Humanos , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Rabdomiólise/epidemiologia , Rabdomiólise/patologia
8.
Br J Anaesth ; 122(5): 613-621, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30916033

RESUMO

BACKGROUND: Individuals genetically susceptible to malignant hyperthermia (MH) exhibit hypermetabolic reactions when exposed to volatile anaesthetics. Mitochondrial dysfunction has previously been associated with the MH-susceptible (MHS) phenotype in animal models, but evidence of this in human MH is limited. METHODS: We used high resolution respirometry to compare oxygen consumption rates (oxygen flux) between permeabilised human MHS and MH-negative (MHN) skeletal muscle fibres with or without prior exposure to halothane. A substrate-uncoupler-inhibitor titration protocol was used to measure the following components of the electron transport chain under conditions of oxidative phosphorylation (OXPHOS) or after uncoupling the electron transport system (ETS): complex I (CI), complex II (CII), CI+CII and, as a measure of mitochondrial mass, complex IV (CIV). RESULTS: Baseline comparisons without halothane exposure showed significantly increased mitochondrial mass (CIV, P=0.021) but lower flux control ratios in CI+CII(OXPHOS) and CII(ETS) of MHS mitochondria compared with MHN (P=0.033 and 0.005, respectively) showing that human MHS mitochondria have a functional deficiency. Exposure to halothane triggered a hypermetabolic response in MHS mitochondria, significantly increasing mass-specific oxygen flux in CI(OXPHOS), CI+CII(OXPHOS), CI+CII(ETS), and CII(ETS) (P=0.001-0.012), while the rates in MHN samples were unaltered by halothane exposure. CONCLUSIONS: We present evidence of mitochondrial dysfunction in human MHS skeletal muscle both at baseline and after halothane exposure.


Assuntos
Hipertermia Maligna/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Adolescente , Adulto , Idoso , Anestésicos Inalatórios/farmacologia , Biópsia , Criança , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/fisiologia , Feminino , Predisposição Genética para Doença , Halotano/farmacologia , Humanos , Masculino , Hipertermia Maligna/genética , Hipertermia Maligna/patologia , Pessoa de Meia-Idade , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Adulto Jovem
9.
G3 (Bethesda) ; 7(5): 1451-1461, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28325813

RESUMO

Delaying the decline in skeletal muscle function will be critical to better maintenance of an active lifestyle in old age. The skeletal muscle ryanodine receptor, the major intracellular membrane channel through which calcium ions pass to elicit muscle contraction, is central to calcium ion balance and is hypothesized to be a significant factor for age-related decline in muscle function. The nematode Caenorhabditis elegans is a key model system for the study of human aging, and strains were generated with modified C. elegans ryanodine receptors corresponding to human myopathic variants linked with malignant hyperthermia and related conditions. The altered response of these strains to pharmacological agents reflected results of human diagnostic tests for individuals with these pathogenic variants. Involvement of nerve cells in the C. elegans responses may relate to rare medical symptoms concerning the central nervous system that have been associated with ryanodine receptor variants. These single amino acid modifications in C. elegans also conferred a reduction in lifespan and an accelerated decline in muscle integrity with age, supporting the significance of ryanodine receptor function for human aging.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Longevidade/genética , Doenças Musculares/genética , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/metabolismo , Humanos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Neurônios/metabolismo , Neurônios/fisiologia , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
Anesthesiology ; 122(5): 1033-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25658027

RESUMO

BACKGROUND: Variants in RYR1 are associated with the majority of cases of malignant hyperthermia (MH), a form of heat illness pharmacogenetically triggered by general anesthetics, and they have also been associated with exertional heat illness (EHI). CACNA1S has also been implicated in MH. The authors applied a targeted next-generation sequencing approach to identify variants in RYR1 and CACNA1S in a cohort of unrelated patients diagnosed with MH susceptibility. They also provide the first comprehensive report of sequencing of these two genes in a cohort of survivors of EHI. METHODS: DNA extracted from blood was genotyped using a "long" polymerase chain reaction technique, with sequencing on the Illumina GAII or MiSeq platforms (Illumina Inc., USA). Variants were assessed for pathogenicity using bioinformatic approaches. For further follow-up, DNA from additional family members and up to 211 MH normal and 556 MH-susceptible unrelated individuals was tested. RESULTS: In 29 MH patients, the authors identified three pathogenic and four novel RYR1 variants, with a further five RYR1 variants previously reported in association with MH. Three novel RYR1 variants were found in the EHI cohort (n = 28) along with two more previously reported in association with MH. Two other variants were reported previously associated with centronuclear myopathy. The authors found one and three rare variants of unknown significance in CACNA1S in the MH and EHI cohorts, respectively. CONCLUSIONS: Targeted next-generation sequencing proved efficient at identifying diagnostically useful and potentially implicated variants in RYR1 and CACNA1S in MH and EHI.


Assuntos
Canais de Cálcio/genética , Transtornos de Estresse por Calor/genética , Hipertermia Maligna/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canais de Cálcio Tipo L , DNA/genética , Primers do DNA , Éxons , Humanos , Reação em Cadeia da Polimerase/métodos
12.
Mol Immunol ; 48(15-16): 2113-21, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21803424

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is a major cause of diarrhoea in pigs and humans. The duration and severity of diarrhoea can be controlled using zinc supplementation, typically pharmacological levels of zinc oxide in pigs. In this study, IPEC J2 cells were used as an in vitro model of intestinal ETEC infection, with separate and simultaneous zinc treatment. Genomic analysis identified increased expression of a variety of innate immune response genes (NF-κB targets) in response to ETEC exposure, and several stress response genes in response to zinc exposure, provided as ZnO. Expression of genes involved in the innate immune response was reduced when cells were simultaneously exposed to ZnO, and it is suggested that ZnO treatment inhibits the induction of NF-κB in response to pathogens, possibly through up-regulated heat shock proteins. A similar response in vivo with consequent down-regulation in the inflammatory response would reduce further pathogen invasion, maintain normal gut function and maintain growth.


Assuntos
Células Epiteliais/efeitos dos fármacos , Infecções por Escherichia coli/imunologia , Fatores Imunológicos/farmacologia , Inflamação/imunologia , Óxido de Zinco/farmacologia , Animais , Linhagem Celular , Escherichia coli Enterotoxigênica , Células Epiteliais/imunologia , Infecções por Escherichia coli/metabolismo , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , NF-kappa B/biossíntese , NF-kappa B/genética , NF-kappa B/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Suínos
13.
J Med Genet ; 47(10): 651-8, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19858130

RESUMO

The use of genome wide single nucleotide polymorphism (SNP) arrays for high resolution molecular cytogenetic analysis using a combination of quantitative and genotype analysis is well established. This study demonstrates that by Mendelian analysis of the SNP genotypes of the parents and a sibling or other appropriate family member to establish phase, it is possible to identify informative loci for each of the four parental haplotypes across each chromosome and map the inheritance of these haplotypes and the position of any crossovers in the proband. The resulting 'karyomap', unlike a karyotype, identifies the parental and grandparental origin of each chromosome and chromosome segment and is unique for every individual being defined by the independent segregation of parental chromosomes and the pattern of non-recombinant and recombinant chromosomes. Karyomapping, therefore, enables both genome wide linkage based analysis of inheritance and detection of chromosome imbalance where either both haplotypes from one parent are present (trisomy) or neither are present (monosomy/deletion). The study also demonstrates that karyomapping is possible at the single cell level following whole genome amplification and, without any prior patient or disease specific test development, provides a universal linkage based methodology for preimplantation genetic diagnosis readily available worldwide.


Assuntos
Mapeamento Cromossômico/métodos , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Estudo de Associação Genômica Ampla/métodos , Haplótipos , Adulto , Criança , Cromossomos Humanos , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Genótipo , Humanos , Masculino , Pais , Linhagem , Polimorfismo de Nucleotídeo Único/genética
14.
BMC Med Genet ; 10: 104, 2009 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-19825159

RESUMO

BACKGROUND: Malignant hyperthermia (MH) is an inherited pharmacogenetic disorder of skeletal muscle, characterised by an elevated calcium release from the skeletal muscle sarcoplasmic reticulum. The dihydropyridine receptor (DHPR) plays an essential role in excitation-contraction coupling and calcium homeostasis in skeletal muscle. This study focuses on the gene CACNA1S which encodes the alpha1 subunit of the DHPR, in order to establish whether CACNA1S plays a major role in MH susceptibility in the UK. METHODS: We investigate the CACNA1S locus in detail in 50 independent MH patients, the largest study to date, to identify novel variants that may predispose to disease and also to characterise the haplotype structure across CACNA1S. RESULTS: We present CACNA1S cDNA sequencing data from 50 MH patients in whom RYR1 mutations have been excluded, and subsequent mutation screening analysis. Furthermore we present haplotype analysis of unphased CACNA1S SNPs to (1) assess CACNA1S haplotype frequency differences between susceptible MH cases and a European control group and (2) analyse population-based association via clustering of CACNA1S haplotypes based on disease risk. CONCLUSION: The study identified a single potentially pathogenic change in CACNA1S (p.Arg174Trp), and highlights that the haplotype structure across CACNA1S is diverse, with a high degree of variability.


Assuntos
Canais de Cálcio/genética , Predisposição Genética para Doença , Hipertermia Maligna/genética , Adolescente , Adulto , Idoso , Sequência de Aminoácidos , Cafeína/farmacologia , Canais de Cálcio Tipo L , Criança , Estudos de Coortes , Feminino , Halotano/farmacologia , Haplótipos , Humanos , Técnicas In Vitro , Masculino , Hipertermia Maligna/fisiopatologia , Pessoa de Meia-Idade , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Esquelético/fisiopatologia , Mutação , Polimorfismo de Nucleotídeo Único , Adulto Jovem
15.
Muscle Nerve ; 40(4): 633-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19645060

RESUMO

In this study we present 3 families with malignant hyperthermia (MH), all of Indian subcontinent descent. One individual from each of these families was fully sequenced for RYR1 and presented with the non-synonymous change c.11315G>A/p.R3772Q. When present in the homozygous state c.11315*A is associated with myopathic symptoms.


Assuntos
Hipertermia Maligna/genética , Doenças Musculares/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Idoso , Povo Asiático , Consanguinidade , DNA/genética , DNA Complementar/biossíntese , DNA Complementar/genética , Família , Feminino , Genes Dominantes , Genes Recessivos , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Doenças Musculares/congênito , Linhagem , Fenótipo , Espasmo/genética , Espasmo/patologia
16.
Infect Genet Evol ; 9(1): 97-103, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19022401

RESUMO

Previous studies have established a genetic component for susceptibility to malaria. Here we use a pedigree based approach, and transmission disequilibrium testing (TDT), to identify immune response genes that influence susceptibility to Plasmodium falciparum malarial phenotypes (parasite density and frequency of clinical episodes) in a Tanzanian population. Evidence for association was observed between markers in the TNF gene cluster and both the malarial phenotypes. There was weaker evidence for associations between HLA-DRB1*04, HLA-DRB1*10, and loci in the TCRBV region with parasite density. There was no evidence for association with polymorphisms in the IL10 promoter, IL1 gene cluster, or from the IL4/IL13 region.


Assuntos
Predisposição Genética para Doença , Malária Falciparum/genética , Polimorfismo Genético , Adolescente , Adulto , Animais , Biomarcadores/sangue , Criança , Pré-Escolar , Interpretação Estatística de Dados , Feminino , Antígenos HLA-D/sangue , Antígenos HLA-D/genética , Humanos , Lactente , Recém-Nascido , Interleucina-10/sangue , Interleucina-10/genética , Interleucinas/sangue , Interleucinas/genética , Desequilíbrio de Ligação , Estudos Longitudinais , Malária Falciparum/epidemiologia , Malária Falciparum/imunologia , Masculino , Pessoa de Meia-Idade , Parasitemia , Linhagem , Fenótipo , Tanzânia , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética
17.
Hum Mutat ; 27(10): 977-89, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16917943

RESUMO

The RYR1 gene encodes the skeletal muscle isoform ryanodine receptor and is fundamental to the process of excitation-contraction coupling and skeletal muscle calcium homeostasis. Mapping to chromosome 19q13.2, the gene comprises 106 exons and encodes a protein of 5,038 amino acids. Mutations in the gene have been found in association with several diseases: the pharmacogenetic disorder, malignant hyperthermia (MH); and three congenital myopathies, including central core disease (CCD), multiminicore disease (MmD), and in an isolated case of a congenital myopathy characterized on histology by cores and rods. The majority of gene mutations reported are missense changes identified in cases of MH and CCD. In vitro analysis has confirmed that alteration of normal calcium homeostasis is a functional consequence of some of these changes. Genotype-phenotype correlation studies performed using data from MH and CCD patients have also suggested that mutations may be associated with a range of disease severity phenotypes. This review aims to summarize the current understanding of RYR1 mutations reported in association with MH and CCD and the present viewpoint on the use of mutation data to aid clinical diagnosis of these conditions.


Assuntos
Hipertermia Maligna/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Cálcio/metabolismo , Genótipo , Humanos , Hipertermia Maligna/metabolismo , Mutação/genética , Miopatia da Parte Central/metabolismo , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia
18.
Mol Hum Reprod ; 10(10): 767-72, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15322224

RESUMO

Preimplantation genetic diagnosis (PGD) of single gene defects following assisted conception typically involves removal of single cells from preimplantation embryos and analysis using highly sensitive PCR amplification methods taking stringent precautions to prevent contamination from foreign or previously amplified DNA. Recently, whole genome amplification has been achieved from small quantities of genomic DNA by isothermal amplification with bacteriophage 29 DNA polymerase- and exonuclease-resistant random hexamer primers. Here we report that isothermal whole genome amplification from single and small numbers of lymphocytes and blastomeres isolated from cleavage stage embryos yielded microgram quantities of amplified DNA, and allowed analysis of 20 different loci, including the DeltaF508 deletion causing cystic fibrosis and polymorphic repeat sequences used in DNA fingerprinting. As with analysis by PCR-based methods, some preferential amplification or allele drop-out at heterozygous loci was detected with single cells. With 2-5 cells, amplification was more consistent and with 10 or 20 cells results were indistinguishable from genomic DNA. The use of isothermal whole genome amplification as a universal first step marks a new era for PGD since, unlike previous PCR-based methods, sufficient DNA is amplified for diagnosis of any known single gene defect by standard methods and conditions.


Assuntos
Embrião de Mamíferos/citologia , Doenças Genéticas Inatas/diagnóstico , Genoma Humano , Técnicas de Amplificação de Ácido Nucleico , Diagnóstico Pré-Implantação/métodos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Feminino , Humanos , Gravidez , Temperatura
19.
Hum Genet ; 112(2): 217-8, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12522565

RESUMO

Malignant hyperthermia (MH), a potentially lethal disorder of skeletal muscle calcium homeostasis, manifests only on exposure to certain anaesthetic drugs. The mode of inheritance appears to be autosomal dominant with both locus and allelic heterogeneity having been reported. Association analysis of eight MH candidate loci in UK families has indicated that several genes influence susceptibility in individual families, rather than MH simply being a major gene defect. In support of this hypothesis, we present data on a replica analysis of an independent sample of European MH families.


Assuntos
Hipertermia Maligna/genética , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio/efeitos dos fármacos , Cromossomos Humanos Par 1/genética , Família , Feminino , Heterogeneidade Genética , Marcadores Genéticos , Predisposição Genética para Doença , Variação Genética , Genótipo , Humanos , Desequilíbrio de Ligação , Masculino , Hipertermia Maligna/etiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Linhagem , Fenótipo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
20.
Hum Mutat ; 20(2): 88-97, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12124989

RESUMO

Malignant hyperthermia (MH) and central core disease (CCD) are autosomal dominant disorders of skeletal muscle. Susceptibility to MH is only apparent after exposure to volatile anesthetics and/or depolarizing muscle relaxants. CCD patients present with diffuse muscular weakness but are also at risk of MH. Mutations in RYR1 (19q13.1), encoding a skeletal muscle calcium release channel (ryanodine receptor), account for the majority of MH and CCD cases. Fifteen RYR1 N-terminal mutations are considered causative of MH susceptibility, five of which are also associated with CCD. In the first extensive UK population survey, eight of 15 mutations were detected in 85 out of 297 (29%) unrelated MH susceptible cases, with G2434R detected in 53 cases (18%). Mutation type was shown to affect significantly MH phenotypes (in vitro contracture test (IVCT) response to caffeine, halothane, and ryanodine). RYR1 mutations associated with both CCD and MH (R163C, R2163H, R2435H) had more severe caffeine and halothane response phenotypes than those associated with MH alone. Mutations near the amino terminal (R163C, G341R) had a relatively greater effect on responses to caffeine than halothane, with a significantly increased caffeine:halothane tension ratio compared to G2434R of the central domain. All phenotypes were more severe in males than females, and were also affected by muscle specimen size and viability. Discordance between RYR1 genotype and IVCT phenotype was observed in seven families (nine individuals), with five false-positives and four false-negatives. This represents the most extensive study of MH patient clinical and genetic data to date and demonstrates that RYR1 mutations involved in CCD are those associated with one end of the spectrum of MH IVCT phenotypes.


Assuntos
Hipertermia Maligna/genética , Mutação/genética , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Anestésicos Inalatórios/farmacologia , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Éxons/genética , Feminino , Halotano/farmacologia , Humanos , Técnicas In Vitro , Masculino , Hipertermia Maligna/epidemiologia , Hipertermia Maligna/etiologia , Músculo Esquelético/química , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miopatia da Parte Central/epidemiologia , Miopatia da Parte Central/etiologia , Fenótipo , Prevalência , Estudos Retrospectivos , Rianodina/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA