RESUMO
Lipids play essential roles in the hepatitis C virus (HCV) life cycle and patients with chronic HCV infection display disordered lipid metabolism which resolves following successful anti-viral therapy. It has been proposed that HCV genotype 3 (HCV-G3) infection is an independent risk factor for hepatocellular carcinoma and evidence suggests lipogenic proteins are involved in hepatocarcinogenesis. We aimed to characterise variation in host lipid metabolism between participants chronically infected with HCV genotype 1 (HCV-G1) and HCV-G3 to identify likely genotype-specific differences in lipid metabolism. We combined several lipidomic approaches: analysis was performed between participants infected with HCV-G1 and HCV-G3, both in the fasting and non-fasting states, and after sustained virological response (SVR) to treatment. Sera were obtained from 112 fasting patients (25% with cirrhosis). Serum lipids were measured using standard enzymatic methods. Lathosterol and desmosterol were measured by gas-chromatography mass spectrometry (MS). For further metabolic insight on lipid metabolism, ultra-performance liquid chromatography MS was performed on all samples. A subgroup of 13 participants had whole body fat distribution determined using in vivo magnetic resonance imaging and spectroscopy. A second cohort of (non-fasting) sera were obtained from HCV Research UK for comparative analyses: 150 treatment naïve patients and 100 non-viraemic patients post-SVR. HCV-G3 patients had significantly decreased serum apoB, non-HDL cholesterol concentrations, and more hepatic steatosis than those with HCV-G1. HCV-G3 patients also had significantly decreased serum levels of lathosterol, without significant reductions in desmosterol. Lipidomic analysis showed lipid species associated with reverse cholesterol transport pathway in HCV-G3. We demonstrated that compared to HCV-G1, HCV-G3 infection is characterised by low LDL cholesterol levels, with preferential suppression of cholesterol synthesis via lathosterol, associated with increasing hepatic steatosis. The genotype-specific lipid disturbances may shed light on genotypic variations in liver disease progression and promotion of hepatocellular cancer in HCV-G3.
Assuntos
Hepacivirus , Hepatite C , Colesterol , Genótipo , Hepacivirus/genética , Humanos , Metabolismo dos Lipídeos/genéticaRESUMO
BACKGROUND: The World Health Organization (WHO) has targeted a reduction in viral hepatitis-related mortality by 65% and incidence by 90% by 2030, necessitating enhanced hepatitis B treatment and prevention programmes in low- and middle-income countries. Hepatitis B e antigen (HBeAg) status is used in the assessment of eligibility for antiviral treatment and for prevention of mother-to-child transmission (PMTCT). Accordingly, the WHO has classified HBeAg rapid diagnostic tests (RDTs) as essential medical devices. METHODS: We assessed the performance characteristics of three commercially available HBeAg RDTs (SD Bioline, Alere, South Africa; Creative Diagnostics, USA; and Biopanda Reagents, UK) in two hepatitis B surface antigen-positive cohorts in Blantyre, Malawi: participants of a community study (n = 100) and hospitalised patients with cirrhosis or hepatocellular carcinoma (n = 94). Two investigators, blinded to the reference test result, independently assessed each assay. We used an enzyme-linked immunoassay (Monolisa HBeAg, Bio-Rad, France) as a reference test and quantified HBeAg concentration using dilutions of the WHO HBeAg standard. We related the findings to HBV DNA levels, and evaluated treatment eligibility using the TREAT-B score. RESULTS: Among 194 HBsAg positive patients, median age was 37 years, 42% were femaleand 26% were HIV co-infected. HBeAg prevalence was 47/194 (24%). The three RDTs showed diagnostic sensitivity of 28% (95% CI 16-43), 53% (38-68) and 72% (57-84) and specificity of 96-100% for detection of HBeAg. Overall inter-rater agreement κ statistic was high at 0.9-1.0. Sensitivity for identifying patients at the threshold where antiviral treatment is recommended for PMTCT, with HBV DNA > 200,000 IU/ml (39/194; 20%), was 22, 49 and 54% respectively. Using the RDTs in place of the reference HBeAg assay resulted in 3/43 (9%), 5/43 (12%) and 8/43 (19%) of patients meeting the TREAT-B treatment criteria being misclassified as ineligible for treatment. A relationship between HBeAg concentration and HBeAg detection by RDT was observed. A minimum HBeAg concentration of 2.2-3.1 log10IU/ml was required to yield a reactive RDT. CONCLUSIONS: Commercially available HBeAg RDTs lack sufficient sensitivity to accurately classify hepatitis B patients in Malawi. This has implications for hepatitis B public health programs in sub-Saharan Africa. Alternative diagnostic assays are recommended.