Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35740417

RESUMO

Glucose and lipid metabolism are crucial functional systems in eukaryotes. A large number of experimental studies both in animal models and humans have shown that long non-coding RNAs (lncRNAs) play an important role in glucose and lipid metabolism. Previously, human lncRNA DEANR1/linc00261 was described as a tumor suppressor that regulates a variety of biological processes such as cell proliferation, apoptosis, glucose metabolism and tumorigenesis. Here we report that murine lncRNA Falcor/LL35, a proposed functional analog of human DEANR1/linc00261, is predominantly expressed in murine normal hepatocytes and downregulated in HCC and after partial hepatectomy. The application of high-throughput approaches such as RNA-seq, LC-MS proteomics, lipidomics and metabolomics analysis allowed changes to be found in the transcriptome, proteome, lipidome and metabolome of hepatocytes after LL35 depletion. We revealed that LL35 is involved in the regulation of glycolysis and lipid biosynthesis in vitro and in vivo. Moreover, LL35 affects Notch and NF-κB signaling pathways in normal hepatocytes. All observed changes result in the decrease in the proliferation and migration of hepatocytes. We demonstrated similar phenotype changes between murine LL35 and human linc00261 depletion in vitro and in vivo that opens the opportunity to translate results for LL35 from a liver murine model to possible functions of human lncRNA linc00261.

2.
Nucleic Acid Ther ; 32(3): 123-138, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35166605

RESUMO

Dysregulation of RNA splicing causes many diseases and disorders. Several therapeutic approaches have been developed to correct aberrant alternative splicing events for the treatment of cancers and hereditary diseases, including gene therapy and redirecting splicing, using small molecules or splice switching oligonucleotides (SSO). Significant advances in the chemistry and pharmacology of nucleic acid have led to the development of clinically approved SSO drugs for the treatment of spinal muscular dystrophy and Duchenne muscular dystrophy (DMD). In this review, we discuss the mechanisms of SSO action with emphasis on "less common" approaches to modulate alternative splicing, including bipartite and bifunctional SSO, oligonucleotide decoys for splice factors and SSO-mediated mRNA degradation via AS-NMD and NGD pathways. We briefly discuss the current progress and future perspectives of SSO therapy for rare and ultrarare diseases.


Assuntos
Distrofia Muscular de Duchenne , Oligonucleotídeos , Processamento Alternativo/genética , Humanos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos/genética , Oligonucleotídeos/farmacologia , Oligonucleotídeos/uso terapêutico , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Splicing de RNA/genética
3.
J Cell Biol ; 220(10)2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34328499

RESUMO

Lumen morphogenesis results from the interplay between molecular pathways and mechanical forces. In several organs, epithelial cells share their apical surfaces to form a tubular lumen. In the liver, however, hepatocytes share the apical surface only between adjacent cells and form narrow lumina that grow anisotropically, generating a 3D network of bile canaliculi (BC). Here, by studying lumenogenesis in differentiating mouse hepatoblasts in vitro, we discovered that adjacent hepatocytes assemble a pattern of specific extensions of the apical membrane traversing the lumen and ensuring its anisotropic expansion. These previously unrecognized structures form a pattern, reminiscent of the bulkheads of boats, also present in the developing and adult liver. Silencing of Rab35 resulted in loss of apical bulkheads and lumen anisotropy, leading to cyst formation. Strikingly, we could reengineer hepatocyte polarity in embryonic liver tissue, converting BC into epithelial tubes. Our results suggest that apical bulkheads are cell-intrinsic anisotropic mechanical elements that determine the elongation of BC during liver tissue morphogenesis.


Assuntos
Anisotropia , Canalículos Biliares/metabolismo , Membrana Celular/metabolismo , Hepatócitos/metabolismo , Animais , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organogênese , Gravidez
4.
Int J Mol Sci ; 22(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203429

RESUMO

DDX3 RNA helicase is intensively studied as a therapeutic target due to participation in the replication of some viruses and involvement in cancer progression. Here we used transcriptome analysis to estimate the primary response of hepatocytes to different levels of RNAi-mediated knockdown of DDX3 RNA helicase both in vitro and in vivo. We found that a strong reduction of DDX3 protein (>85%) led to similar changes in vitro and in vivo-deregulation of the cell cycle and Wnt and cadherin pathways. Also, we observed the appearance of dead hepatocytes in the healthy liver and a decrease of cell viability in vitro after prolonged treatment. However, more modest downregulation of the DDX3 protein (60-65%) showed discordant results in vitro and in vivo-similar changes in vitro as in the case of strong knockdown and a different phenotype in vivo. These results demonstrate that the level of DDX3 protein can dramatically influence the cell phenotype in vivo and the decrease of DDX3, for more than 85% leads to cell death in normal tissues, which should be taken into account during the drug development of DDX3 inhibitors.


Assuntos
RNA Helicases DEAD-box/metabolismo , Hepatócitos/metabolismo , Animais , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , RNA Helicases DEAD-box/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transcriptoma/genética
5.
Biochimie ; 131: 159-172, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27318030

RESUMO

Long non-coding RNAs constitute the most abundant part of the transcribed mammalian genome. lncRNAs affect all essential processes in the living cell including transcription, splicing, translation, replication, shaping of chromatin and post translational modification of proteins. Alterations in lncRNA expression have been linked to a number of diseases; thus, modulation of lncRNA expression holds a huge potential for gene-based therapy. In this review we summarize published data about lncRNAs in the context of hepatic carcinogenesis and liver fibrosis, and the corresponding potential targets for gene therapy. Recent advancements in targeted delivery to the liver made RNA interference an invaluable tool to decipher hepatic lncRNA function and to develop lncRNA-oriented therapies for liver-involved diseases in the future. Different approaches for RNA delivery that can be used for functional studies in the lab and for clinical lncRNA based applications are critically discussed in this review.


Assuntos
Cirrose Hepática/genética , Neoplasias Hepáticas/genética , Fígado/metabolismo , RNA Longo não Codificante/genética , Animais , Pesquisa Biomédica/métodos , Regulação da Expressão Gênica , Terapia Genética/métodos , Humanos , Fígado/patologia , Cirrose Hepática/terapia , Neoplasias Hepáticas/terapia , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA