Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 130: 111746, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442575

RESUMO

BACKGROUND: In clear cell renal cell carcinoma (ccRCC), the role of Regulatory T cells (Treg cells) as prognostic and immunotherapy response predictors is not fully explored. METHODS: Analyzing renal clear cell carcinoma datasets from TISCH, TCGA, and GEO, we focused on 8 prognostic Treg genes to study patient subtypes in ccRCC. We assessed Treg subtypes in relation to patient prognosis, tumor microenvironment, metabolism. Using Cox regression and principal component analysis, we devised Treg scores for individual patient characterization and explored the molecular role of C1QL1, a critical gene in the Treg model, through in vivo and in vitro studies. RESULTS: Eight Treg-associated prognostic genes were identified, classifying ccRCC patients into cluster A and B. Cluster A patients showed poorer prognosis with distinct clinical and molecular profiles, potentially benefiting more from immunotherapy. Low Treg scores correlated with worse outcomes and clinical progression. Low scores also suggested that patients might respond better to immunotherapy and targeted therapies. In ccRCC, C1QL1 knockdown reduced tumor proliferation and invasion via NF-kb-EMT pathways and decreased Treg cell infiltration, enhancing immune efficacy. CONCLUSIONS: The molecular subtype and Treg score in ccRCC, based on Treg cell marker genes, are crucial in personalizing ccRCC treatment and underscore C1QL1's potential as a tumor biomarker and target for immunotherapy.


Assuntos
Carcinoma de Células Renais , Carcinoma , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Prognóstico , Linfócitos T Reguladores , Transcriptoma , Análise de Sequência de RNA , Neoplasias Renais/genética , Microambiente Tumoral/genética
2.
BMC Cancer ; 18(1): 436, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29665790

RESUMO

BACKGROUND: Our previous study demonstrated a close relationship between NOTCH signaling pathway and salivary adenoid cystic carcinoma (SACC). HES1 is a well-known target gene of NOTCH signaling pathway. The purpose of the present study was to further explore the molecular mechanism of HES1 in SACC. METHODS: Comparative transcriptome analyses by RNA-Sequencing (RNA-Seq) were employed to reveal NOTCH1 downstream gene in SACC cells. Immunohistochemical staining was used to detect the expression of HES1 in clinical samples. After HES1-siRNA transfected into SACC LM cells, the cell proliferation and cell apoptosis were tested by suitable methods; animal model was established to detect the change of growth ability of tumor. Transwell and wound healing assays were used to evaluate cell metastasis and invasion. RESULTS: We found that HES1 was strongly linked to NOTCH signaling pathway in SACC cells. The immunohistochemical results implied the high expression of HES1 in cancerous tissues. The growth of SACC LM cells transfected with HES1-siRNAs was significantly suppressed in vitro and tumorigenicity in vivo by inducing cell apoptosis. After HES1 expression was silenced, the SACC LM cell metastasis and invasion ability was suppressed. CONCLUSIONS: The results of this study demonstrate that HES1 is a specific downstream gene of NOTCH1 and that it contributes to SACC proliferation, apoptosis and metastasis. Our findings serve as evidence indicating that HES1 may be useful as a clinical target in the treatment of SACC.


Assuntos
Carcinoma Adenoide Cístico/genética , Oncogenes , Neoplasias das Glândulas Salivares/genética , Fatores de Transcrição HES-1/genética , Adulto , Idoso , Animais , Apoptose/genética , Carcinoma Adenoide Cístico/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Recidiva , Neoplasias das Glândulas Salivares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Oncotarget ; 7(50): 82961-82971, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27783992

RESUMO

The cadherin-4 gene (CDH4) of the cadherin family encodes non-epithelial R-cadherin (R-cad); however, the function of this gene in different types of cancer remains controversial. In this study, we found higher expression of CDH4 mRNA in a salivary adenoid cystic carcinoma (SACC) cell line with low metastatic potential (SACC-83) than in a cell line with high metastatic potential (SACC-LM). By analyzing 67 samples of SACC tissues and 40 samples of paraneoplastic normal tissues, we found R-cad highly expressed in 100% of normal paraneoplastic tissue but only expressed in 64% of SACC tumor tissues (P<0.001). Knockdown of CDH4 expression in vitro promoted the growth, mobility and invasion of SACC cells, and in vivo experiments showed that decreased CDH4 expression enhanced SACC tumorigenicity. Furthermore, CDH4 suppression resulted in down-regulation of E-cadherin (E-cad), which is encoded by CDH1 gene and is a well-known tumor suppressor gene by inhibition of cell proliferation and migration. These results indicate that CDH4 may play a negative role in the growth and metastasis of SACC via co-expression with E-cadherin.


Assuntos
Caderinas/metabolismo , Carcinoma Adenoide Cístico/metabolismo , Neoplasias das Glândulas Salivares/metabolismo , Animais , Antígenos CD , Caderinas/genética , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/secundário , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Interferência de RNA , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Transdução de Sinais , Fatores de Tempo , Transfecção , Carga Tumoral
4.
Oncol Rep ; 35(2): 1006-12, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25695658

RESUMO

Several studies have reported that FZD2 regulates tumor biology in a complex manner. The aim of the present study was to identify the role of FZD2 in the cell growth and metastasis of salivary adenoid cystic carcinomas (SACCs). The expression of FZD2 in ACC-83 and ACC-LM cells were measured with real-time PCR. Immunohistochemical staining was used to detect the expression of FZD2 in clinical SACC samples with or without metastasis. Cell proliferation and Transwell assays were performed to explore the effects of FZD2 on cell growth and migration following the silencing of FZD2 with small interference RNAs and the overexpression of FZD2 with plasmid. Our data showed that FZD2 was downregulated in ACC-LM cells, which are an adenoid cystic carcinoma cell line with high metastatic potential, compared to ACC-83 cells, which have low metastatic potential. Additionally, the expression of FZD2 was lower in SACC tissues with metastasis compared to SACC tissues without metastasis (P<0.05). Cell proliferation and migration of ACC-83 cells were increased after the knockdown of FZD2 and decreased following overexpression of FZD2. Knockdown of FZD2 downregulated the expression of PAI-1. Our results suggest that FZD2 may be a tumor suppressor gene in SACCs that inhibits cell growth and migration.


Assuntos
Carcinoma Adenoide Cístico/patologia , Receptores Frizzled/fisiologia , Proteínas de Neoplasias/fisiologia , Neoplasias das Glândulas Salivares/patologia , Divisão Celular , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Humanos , Invasividade Neoplásica , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Interferência de RNA , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção , Ensaio Tumoral de Célula-Tronco , Via de Sinalização Wnt
5.
Oncotarget ; 5(16): 6885-95, 2014 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-25149541

RESUMO

BACKGROUND: Numerous studies have reported both the tumor-suppressive and oncogenic roles of the Notch pathway, indicating that Notch activity regulates tumor biology in a complex, context-dependent manner. The aim of the present study was to identify the role of NOTCH1 in the cell growth and metastasis of SACC. METHODS: We analyzed the expression of NOTCH1 in clinical SACC samples using immunohistochemical staining. We silenced the expression of NOTCH1 and overexpressed activated NOTCH1 to elucidate the effects of NOTCH1 on proliferation, migration and invasion. NOTCH1 target genes were validated by real-time PCR. RESULTS: Our results showed that NOTCH1 was upregulated in SACC tissues when compared with normal tissues, and this upregulation was further enhanced in SACC tissues with metastasis and recurrence when compared with SACC tissues without metastasis. Overexpression of NOTCH1 in SACC cells promoted cell growth, migration and invasion, and knockdown of NOTCH1 inhibited cell proliferation in vitro and tumorigenicity in vivo by inducing cell apoptosis. CONCLUSIONS: The results of this study suggest that NOTCH1 plays a key role in the cell growth, anti-apoptosis, and metastasis of SACC. NOTCH1 inhibitors might therefore have potential therapeutic applications in treating SACC patients by inhibiting cancer cell growth and metastasis.


Assuntos
Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Receptor Notch1/biossíntese , Neoplasias das Glândulas Salivares/metabolismo , Neoplasias das Glândulas Salivares/patologia , Animais , Apoptose/fisiologia , Carcinoma Adenoide Cístico/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Metástase Neoplásica , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Receptor Notch1/genética , Receptor Notch1/metabolismo , Neoplasias das Glândulas Salivares/genética , Transdução de Sinais , Transfecção , Regulação para Cima
6.
Oncol Rep ; 26(1): 101-8, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21573496

RESUMO

Cadherins are found in almost all living organisms. In addition to their role in the formation and maintenance of normal tissue architecture, cadherins seem to play a crucial role in the cell-cell interactions of cancer cells in tumorigenesis, invasion and metastasis. The aim of the present study was to identify the role of CDH12 in the invasion and metastasis of salivary adenoid cystic carcinoma (SACC). Real-time PCR results showed that CDH12 is abnormally expressed in the highly metastatic SACC cell line ACC-M, compared to ACC-2, a SACC cell line with low metastatic ability. CDH12 expression was significantly higher in clinical samples with metastasis and recurrence than in those without metastasis and recurrence (P<0.05), as demonstrated by immunohistochemical analysis. Overexpression of the CDH12 protein in ACC-M cells infected with an adenovirus vector containing CDH12 enhanced the invasive and migratory ability of ACC-M cells in vitro compared to ACC-M cells infected with empty vector. Likewise, knockdown of CDH12 by small interfering RNA efficiently inhibited the invasion and migration of ACC-M cells in vitro. These results indicate that CDH12 may play an important role in the invasion and metastasis of SACC.


Assuntos
Caderinas/metabolismo , Carcinoma Adenoide Cístico/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias das Glândulas Salivares/metabolismo , Movimento Celular , Humanos , Imuno-Histoquímica , Invasividade Neoplásica , Metástase Neoplásica , Protocaderinas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
7.
Oncol Rep ; 24(2): 363-8, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20596622

RESUMO

The Notch signaling pathway is important for cell-cell communication; it is involved in gene regulation mechanisms that control multiple cell differentiation processes during embryonic and adult life. Notch is present in all metazoans, and vertebrates possess four different Notch receptors: Notch-1, Notch-2, Notch-3, and Notch-4. The aim of the present study was to identify the role of Notch protein in the metastasis of salivary adenoid cystic carcinoma (SACC). Real-time PCR results showed that Notch-1, Notch-2, and Notch-4 were upregulated in the highly metastatic SACC cell line ACC-M, compared to ACC-2, a SACC cell line with low metastatic ability. Knockdown of Notch-4 by small interfering RNA efficiently inhibited the invasion of ACC-M cells. Notch-4 expression was significantly higher in the clinical samples with metastasis and recurrence compared to that in control (p<0.05), shown by immunohistochemistry analysis. These results indicate that Notch-4 may play an important role in SACC metastasis.


Assuntos
Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/patologia , Proteínas Proto-Oncogênicas/fisiologia , Receptores Notch/fisiologia , Neoplasias das Glândulas Salivares/genética , Neoplasias das Glândulas Salivares/patologia , Carcinoma Adenoide Cístico/metabolismo , Estudos de Casos e Controles , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Metástase Neoplásica , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Interferente Pequeno/farmacologia , Receptor Notch4 , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Receptores Notch/metabolismo , Recidiva , Neoplasias das Glândulas Salivares/metabolismo , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Regulação para Cima/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA