Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(9): 5003-5013, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408326

RESUMO

Enabling the detection of organophosphate pesticide (OP) residues through enzyme inhibition-based technology is crucial for ensuring food safety and human health. However, the use of acetylcholinesterase, the primary target enzyme for OPs, isolated from animals in practical production poses challenges in terms of sensitivity and batch stability. To address this issue, we identified a highly sensitive and reproducible biorecognition element, TrxA-PvCarE1, derived from red kidney beans and successfully overexpressed it in Escherichia coli. The resulting recombinant TrxA-PvCarE1 exhibited remarkable sensitivity toward 10 OPs, surpassing that of commercial acetylcholinesterase. Additionally, this approach demonstrated the capability to simultaneously detect copper compounds with high sensitivity, expanding the range of pesticides detectable using the traditional enzyme inhibition method. Spiking recovery tests conducted on cowpea and carrot samples verified the suitability of the TrxA-PvCarE1-based technique for real-life sample analysis. In summary, this study highlights a promising comprehensive candidate for the rapid detection of pesticide residues.


Assuntos
Técnicas Biossensoriais , Inseticidas , Resíduos de Praguicidas , Praguicidas , Animais , Humanos , Acetilcolinesterase/química , Cobre/análise , Compostos Organofosforados/química , Praguicidas/química , Inseticidas/análise , Resíduos de Praguicidas/análise , Organofosfatos/análise , Técnicas Biossensoriais/métodos
2.
Pol J Microbiol ; 72(3): 285-297, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37725896

RESUMO

The study aimed to isolate Lactobacillaceae strains with in vitro hypoglycemic activity and probiotic properties and to determine their antidiabetic abilities in vivo. Lactiplantibacillus plantarum 22, L. plantarum 25, Limosilactobacillus fermentum 11, and L. fermentum 305 with high in vitro hypoglycemic activity were screened from 23 strains of Lactobacillaceae isolated from human feces and identified by 16S rDNA sequencing. The fasting blood glucose (FBG) of the mice was recorded weekly. After 12 weeks, liver, kidney, and pancreas tissues were stained with hematoxylin and eosin (H&E) to observe histomorphology; the inflammatory factors were assayed by Quantitative Real-time PCR; PI3K and AKT were measured by Western blot; the short-chain fatty acids (SCFAs) were determined by LC-MS/MS. Inhibitory activities of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 against α-amylase were 62.29 ± 0.44%, 51.81 ± 3.65%, 58.40 ± 1.68%, and 57.48 ± 5.04%, respectively. Their inhibitory activities to α-glucosidase were 14.89 ± 0.38%, 15.32 ± 0.89%, 52.63 ± 3.07%, and 51.79 ± 1.13%, respectively. Their survival rate after simulated gastrointestinal test were 12.42 ± 2.84%, 9.10 ± 1.12%, 5.86 ± 0.52%, and 8.82 ± 2.50% and their adhesion rates to Caco-2 cell were 6.09 ± 0.39%, 6.37 ± 0.28%, 6.94 ± 0.27%, and 6.91 ± 0.11%, respectively. The orthogonal tests of bacterial powders of the four strains showed that the maximum inhibitory activities to α-amylase and α-glucosidase were 93.18 ± 1.19% and 75.33 ± 2.89%, respectively. The results showed that the mixture of Lactobacillaceae could lower FBG, reduce inflammation, and liver, kidney, and pancreas damage, promote PI3K/AKT signaling pathway, and increase the content of SCFAs. The combination of L. plantarum 22, L. plantarum 25, L. fermentum 11, and L. fermentum 305 can potentially improve type 2 diabetes mellitus (T2DM).


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Camundongos , Animais , Lactobacillaceae , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células CACO-2 , Cromatografia Líquida , alfa-Glucosidases , Espectrometria de Massas em Tandem , Hipoglicemiantes/farmacologia , Transdução de Sinais
3.
Food Chem ; 416: 135822, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893638

RESUMO

Herein, we developed a method coupling TLC and enzyme inhibition principles to rapidly detect OPs (dichlorvos, paraoxon and parathion). After the removal of the organic solvent from the samples using TLC and paper-based chips, the enzyme was added to the detection system. The results showed that the current method effectively reduced the effects of solvents on enzyme behavior. Moreover, the pigments could be successfully retained on TLC with 40% ddH2O/ACN solution (v/v) as a developing solvent. Additionally, the detection limits (LODs) were 0.002 µg/mL for dichlorvos, 0.006 µg/mL for paraoxon, and 0.003 µg/mL for parathion. Finally, the method was applied to spiked cabbage, cucumber, and spinach and showed good average recoveries ranging between 70.22% and 119.79%. These results showed that this paper-based chip had high sensitivity, precleaning, and elimination of organic solvent properties. Furthermore, it provides a valuable idea for sample pretreatment and rapid determination of pesticide residues in food.


Assuntos
Paration , Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Diclorvós/análise , Cromatografia em Camada Fina , Paraoxon/análise , Resíduos de Praguicidas/análise , Paration/análise , Solventes
4.
Food Chem ; 413: 135607, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36773354

RESUMO

Simple and rapid multiresidue trace detection of organophosphate pesticides (OPs) is extremely important for various reasons, including food safety, environmental monitoring, and national health. Here, a catalytic hairpin self-assembly (CHA)-based competitive fluorescent immunosensor was developed to detect OPs in agricultural products, involving enabled dual signal amplification followed by a CHA reaction. The developed method could detect 0.01-50 ng/mL triazophos, parathion, and chlorpyrifos, with limits of detection (LODs) of 0.012, 0.0057, and 0.0074 ng/mL, respectively. The spiked recoveries of samples measured using this assay ranged from 82.8 % to 110.6 %, with CV values ranging between 5.5 % and 18.5 %. This finding suggests that the CHA-based competitive fluorescent immunosensor is a reliable and accurate method for detecting OPs in agricultural products. The results correlated well with those obtained from the liquid chromatography-tandem mass spectrometry (LC-MS/MS) method, indicating that the CHA-based biosensor is able to accurately detect OPs and can be used as a reliable alternative to the LC-MS/MS method. Additionally, the CHA-based biosensor is simpler and faster than LC-MS/MS, which makes it a more practical and cost-effective option for the detection of OPs. In summary, the CHA-based competitive fluorescent immunosensor can be considered a promising approach for trace analysis and multiresidue determination of pesticides, which can open up new horizons in the fields of food safety, environmental monitoring, and national health.


Assuntos
Técnicas Biossensoriais , Clorpirifos , Inseticidas , Praguicidas , Cromatografia Líquida/métodos , Espectrometria de Massas em Tandem , Imunoensaio , Praguicidas/análise , Inseticidas/análise
5.
Crit Rev Food Sci Nutr ; 63(21): 4942-4965, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34852703

RESUMO

Excessive use of pesticides can cause contamination of the environment and agricultural products that are directly threatening human life and health. Therefore, in the process of food safety supervision, it is crucial to conduct sensitive and rapid detection of pesticide residues. The recognition element is the vital component of sensors and methods for fast testing pesticide residues in food. Improper recognition elements may lead to defects of testing methods, such as poor stability, low sensitivity, high economic costs, and waste of time. We can use the molecular biological technique to address these challenges as a good strategy for recognition element production and modification. Herein, we review the molecular biological methods of five specific recognition elements, including aptamers, genetic engineering antibodies, DNAzymes, genetically engineered enzymes, and whole-cell-based biosensors. In addition, the application of these identification elements combined with biosensor and immunoassay methods in actual detection was also discussed. The purpose of this review was to provide a valuable reference for further development of rapid detection methods for pesticide residues.


Assuntos
Técnicas Biossensoriais , Resíduos de Praguicidas , Praguicidas , Humanos , Praguicidas/análise , Resíduos de Praguicidas/análise , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Técnicas Biossensoriais/métodos
6.
J Pharm Anal ; 12(4): 637-644, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36105157

RESUMO

Balancing the risks and benefits of organophosphate pesticides (OPs) on human and environmental health relies partly on their accurate measurement. A highly sensitive fluorescence anti-quenching multi-residue bio-barcode immunoassay was developed to detect OPs (triazophos, parathion, and chlorpyrifos) in apples, turnips, cabbages, and rice. Gold nanoparticles were functionalized with monoclonal antibodies against the tested OPs. DNA oligonucleotides were complementarily hybridized with an RNA fluorescent label for signal amplification. The detection signals were generated by DNA-RNA hybridization and ribonuclease H dissociation of the fluorophore. The resulting fluorescence signal enables multiplexed quantification of triazophos, parathion, and chlorpyrifos residues over the concentration range of 0.01-25, 0.01-50, and 0.1-50 ng/mL with limits of detection of 0.014, 0.011, and 0.126 ng/mL, respectively. The mean recovery ranged between 80.3% and 110.8% with relative standard deviations of 7.3%-17.6%, which correlate well with results obtained by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The proposed bio-barcode immunoassay is stable, reproducible and reliable, and is able to detect low residual levels of multi-residue OPs in agricultural products.

7.
Artigo em Inglês | MEDLINE | ID: mdl-34911000

RESUMO

The novel core-shell structural zeolitic imidazolate framework-8 @molecularly imprinted polymers were successfully synthesized by surface imprinting technique and used as adsorbents for solid-phase extraction of organophosphorus pesticides. The obtained hybrid composites were characterized by scanning electron microscopy, transmission electron microscopy and Fourier-transform infrared, and their adsorbing and recognition performance were evaluated by binding experiments. The results showed that zeolitic imidazolate framework-8 @molecularly imprinted polymers presented a typically core-shell structure with molecularly imprinted shell (about 50 nm) homogeneously polymerized on the surface of zeolitic imidazolate framework-8 core, and exhibited specific recognition towards organophosphorus pesticides with fast adsorption capacity. The adsorption and desorption conditions including sample loading solvent, sample pH, washing and elution solvent were optimized. Under optimum conditions, the solid-phase extraction based on zeolitic imidazolate framework-8 @molecularly imprinted polymers combined with high liquid chromatography-tandem mass spectrometry method for determining organophosphorus pesticides was established and exhibited good linearity (R2 ≥ 0.9927) in the range of 1-200 µg/L. With spiked at three different concentration levels in agricultural products (cauliflower, radish, pear, muskmelon), the recoveries ranged from 82.5% to 123.0% with relative standard deviations lower than 8.24%. The developed method was sensitive, convenient and efficient. More importantly, this study could provide a promising strategy for designing new adsorbents with extremely fast mass transfer rate for other potential trace contaminants.


Assuntos
Estruturas Metalorgânicas/química , Polímeros Molecularmente Impressos/química , Compostos Organofosforados , Praguicidas , Extração em Fase Sólida/métodos , Adsorção , Cromatografia Líquida de Alta Pressão , Limite de Detecção , Modelos Lineares , Compostos Organofosforados/análise , Compostos Organofosforados/química , Compostos Organofosforados/isolamento & purificação , Praguicidas/análise , Praguicidas/química , Praguicidas/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
8.
J Agric Food Chem ; 69(37): 11131-11141, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34494438

RESUMO

A bio-barcode immunoassay based on droplet digital polymerase chain reaction (ddPCR) was developed to simultaneously quantify triazophos, parathion, and chlorpyrifos in apple, cucumber, cabbage, and pear. Three gold nanoparticle (AuNP) probes and magnetic nanoparticle (MNP) probes were prepared, binding through their antibodies with the three pesticides in the same tube. Three groups of primers, probes, templates, and three antibodies were designed to ensure the specificity of the method. Under the optimal conditions, the detection limits (expressed as IC10) of triazophos, parathion, and chlorpyrifos were 0.22, 0.45, and 4.49 ng mL-1, respectively. The linear ranges were 0.01-20, 0.1-100, and 0.1-500 ng mL-1, and the correlation coefficients (R2) were 0.9661, 0.9834, and 0.9612, respectively. The recoveries and relative standard deviations (RSDs) were in the ranges of 75.5-98.9 and 8.3-16.7%. This study provides the first insights into the ddPCR for the determination of organophosphate pesticides. It also laid the foundation for high-throughput detection of other small molecules.


Assuntos
Nanopartículas Metálicas , Praguicidas , Ouro , Imunoensaio , Limite de Detecção , Praguicidas/análise , Reação em Cadeia da Polimerase
9.
Food Chem ; 365: 130485, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34364008

RESUMO

Herein, a novel core-shell-shell magnetic nanosphere denoted as Fe3O4@ZIF-8@polymer was fabricated by sequential in situ self-assembly and precipitation polymerization for effective magnetic solid-phase extraction of nine organophosphorus pesticides (OPPs) from river water, pear, and cabbage samples. The integrated Fe3O4@ZIF-8@polymer featured convenient magnetic separation property and excellent multi-target binding ability. More importantly, the functional polymer coating greatly improved the extraction performance of Fe3O4@ZIF-8 for OPPs, thus facilitating the simultaneous determination of trace OPP residues in real samples. The developed MPSE-LC-MS/MS method exhibited good linearity (R2 ≥ 0.9991) over the concentration range of 0.2-200 µg L-1, low limits of detection of 0.0002-0.005 µg L-1 for river water and 0.006-0.185 µg kg-1 for pear and cabbage, satisfactory precision with relative standard deviations ≤ 9.7% and accuracy with recoveries of 69.5-94.3%. These results highlight that the combination of polymers with MOFs has great potential to fabricate excellent adsorbents for high-throughput analysis of various contaminants in complex matrices.


Assuntos
Estruturas Metalorgânicas , Nanosferas , Praguicidas , Cromatografia Líquida , Limite de Detecção , Compostos Organofosforados , Praguicidas/análise , Polímeros , Extração em Fase Sólida , Espectrometria de Massas em Tandem
10.
Biosens Bioelectron ; 192: 113489, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34293688

RESUMO

Highly sensitive detection of aflatoxin B1 (AFB1) is of great significance because of its high toxicity and carcinogenesis. We propose a magnetic relaxation sensing method based on gold nanoparticles (Au NPs)-assisted triple self-assembly cascade signal amplification for highly sensitive detection of AFB1. Both AFB1 antibody and initiator DNA (iDNA) are labeled on Au NPs to form Ab-Au-iDNA probe. iDNA is enriched by Au NPs to achieve first signal amplification. Different amounts of Ab-Au-iDNA were bound with AFB1 antigen by indirect competitive immunoassay, and then hybridization chain reaction event was initiated by iDNA to produce long hybridization chain reaction products to enrich more horseradish peroxidase-streptavidin for the second signal amplification. Dopamine could be rapidly converted to polydopamine by HRP catalysis, which is used as the third signal amplification. The Fe3+ solution, providing paramagnetic ions with a strong magnetic signal, could be adsorbed by the polydopamine due to the formation of coordination bonds of phenolic hydroxyl groups with Fe3+. This effective interaction between polydopamine and Fe3+ significantly changes the transverse relaxation time signal of Fe3+ supernatant solution, which can be used as a magnetic probe for highly sensitive detection of AFB1. The sensor exhibited high specificity and sensitivity with a detection limit of 0.453 pg/mL owing to the Au NP-assisted triple self-assembly cascade signal amplification strategy. It has been successfully employed for AFB1 detection in animal feed samples with consistent results of enzyme linked immune sorbent assay and high-performance liquid chromatography.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Aflatoxina B1/análise , Animais , Ouro , Imunoensaio , Limite de Detecção , Fenômenos Magnéticos
11.
Food Chem ; 364: 130326, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34171812

RESUMO

Herein, a dual-mode method based on fluorescent and colorimetric sensor was developed for determination of organophosphate pesticides (OPs). In this study, indoxyl acetate (IDA) was hydrolyzed by esterase into indophenol. Indophenol leads to changes in fluorescence signal and aggregation of gold nanoparticles (AuNPs); ultimately changing the color from red to blue. When OPs exist, the formation of indophenol was inhibited. With increasing the concentrations of OPs, the enhancement rate of fluorescence signal decreases, and the color change of AuNPs weakened gradually. The assay was applied for determination of dichlorvos, trichlorfon, and paraoxon, and the limits of detection (LODs) were 0.0032 mg/kg, 0.0096 mg/kg, and 0.0074 mg/kg (fluorometric assay), and 0.0120 mg/kg, 0.0224 mg/kg, and 0.0106 mg/kg (colorimetric assay), respectively. Finally, such a convenient and sensitive sensing assay was successfully applied for quantification of OPs in pear and Chinese cabbage with good recoveries ranged between 80.19 and 116.93%.


Assuntos
Brassica , Inseticidas , Nanopartículas Metálicas , Praguicidas , Pyrus , China , Colorimetria , Diclorvós , Ouro , Praguicidas/análise
12.
Food Chem ; 362: 130118, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34082296

RESUMO

Organophosphate pesticides (OPs) are often used as insecticides and acaricides in agriculture, thus improving yields. OP residues may pose a serious threat, duetoinhibitionof the enzymeacetylcholinesterase(AChE). Therefore, a competitive bio-barcode immunoassay was designed for simultaneous quantification of organophosphate pesticide residues using AuNP signal amplification technology and Au@Pt catalysis. The AuNP probes were labelled with antibodies and corresponding bio-barcodes (ssDNAs), MNP probes coated with ovalbumin pesticide haptens and Au@Pt probes functionalized with the complementary ssDNAs were then prepared. Subsequently, pesticides competed with MNP probes to bind the AuNP probes. The recoveries of the developed assay were ranged from 71.26 to 117.47% with RSDs from 2.52 to 14.52%. The LODs were 9.88, 3.91, and 1.47 ng·kg-1, for parathion, triazophos, and chlorpyrifos, respectively. The assay was closely correlated with the data obtained from LC-MS/MS. Therefore, the developed method has the potential to be used as an alternative approach for detection of multiple pesticides.


Assuntos
Contaminação de Alimentos/análise , Imunoensaio/métodos , Nanopartículas Metálicas/química , Resíduos de Praguicidas/análise , Catálise , Clorpirifos/análise , Cromatografia Líquida , Análise de Alimentos/métodos , Ouro/química , Imunoensaio/instrumentação , Limite de Detecção , Compostos Organofosforados/análise , Organotiofosfatos/análise , Oxazinas/química , Paration/análise , Platina/química , Espectrometria de Massas em Tandem , Triazóis/análise
13.
Analyst ; 146(3): 956-963, 2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33245078

RESUMO

Herein, an indirect SERS sensing assay was developed for the determination of glyphosate (Gly) in tap water. The mechanism of detection was based on relieving the inhibitory effect of l-cysteine (l-cys) on a Au-Pt nanozyme by combining Gly with l-cys through divalent copper ions (Cu2+). In this method, a novel nano-chain-like Au-Ag composite with good repeatability was successfully fabricated to detect SERS signals of oxTMB without disturbing TMB Raman signals. Under optimal conditions, the SERS signal intensity of oxTMB (at 1605 cm-1) was proportional to the concentration of Gly. The results showed a good linear response over the concentration ranges of 10 µg L-1 to 1000 mg L-1. The limit of detection and limit of quantitation of Gly were found to be 5 µg L-1 and 10 µg L-1, respectively. In addition, good anti-interference ability against interfering cations and structural analogues deserves to be mentioned. This SERS assay can be used for detection of Gly in tap water that can meet the needs of practical detection.


Assuntos
Ouro , Nanopartículas Metálicas , Cisteína , Glicina/análogos & derivados , Análise Espectral Raman , Glifosato
14.
J Agric Food Chem ; 68(28): 7298-7315, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551623

RESUMO

Acetylcholinesterase inactivating compounds, such as organophosphate (OP) and carbamate (CM) pesticides, are widely used in agriculture to ensure sustainable production of food and feed. As a consequence of their applications, they would result in neurotoxicity, even death. In this essence, the development of enzyme inhibition methods still shows great significance as rapid detection techniques for on-site large-scale screening of OPs and CMs. Initially, mechanisms and applications of various enzyme-inhibition-based methods and devices, including optical colorimetric assay, fluorometric assays, electrochemical biosensors, rapid test card, and microfluidic device, are highlighted in the present overview. Further, to enhance the enzyme sensitivity for detection; alternative enzyme sources or high yield enrichment methods (such as abzyme, artificial enzyme, and recombinant enzyme), as well as enzyme reactivation and identification, are also addressed in this comprehensive overview.


Assuntos
Acetilcolinesterase/química , Carbamatos/análise , Inibidores da Colinesterase/análise , Ensaios Enzimáticos/métodos , Compostos Organofosforados/análise , Praguicidas/análise , Técnicas Biossensoriais/métodos
15.
Mikrochim Acta ; 186(8): 504, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270627

RESUMO

Nanofibrous polyporous membranes imprinted with cyhexatin (CYT) were formed via the ordered distribution of the imprints in electrospun nanofibers. The MIPs have a high mass transfer rate and enhanced adsorption capacity. In addition, a printed carbon electrode with enhanced sensitivity was developed via electrochemical fabrication of reduced graphene oxide (rGO) and gold nanoparticles (AuNPs). The molecularly imprinted sensor exhibits excellent selectivity and sensitivity for CYT. The structure and morphology of the nanohybrid films were characterized by using scanning electron microscopy, atomic force microscopy and chronoamperometry. The sensing performances were evaluated by cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy by using hexacyanoferrate(IV) as an electrochemical probe. The electrode, best operated at a working potential of around 0.16 V (vs. Ag/AgCl), has a linear response in the 1-800 ng mL-1 CYT concentration range and a detection limit of 0.17 ng mL-1 (at S/N = 3). The sensor demonstrated satisfactory recoveries when applied to the determination of CYT in spiked pear samples. Graphical abstract Schematic presentation of the electrochemical sensor for detection of CYT.

16.
Mikrochim Acta ; 186(6): 390, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152243

RESUMO

A novel and highly sensitive enzyme inhibition assay was developed for the rapid detection of the organophosphate pesticide dichlorvos and the carbamate pesticide carbofuran. It achieves signal amplification by the secondary catalysis of platinum nanoparticles. Acetylcholinesterase (AChE) is capable of catalyzing the hydrolysis of acetylthiocholine to form thiocholine. Thiocholine causes the aggregation of citrate-capped platinum nanoparticles which then lose their peroxidase-mimicking properties. After addition of pesticides, the activity of AChE is inhibited, less thiocholine is produced, less aggregation occurs, and the peroxidase-mimetic properties are increasingly retained. In the presence of tetramethylbenzidine and H2O2, a deep blue coloration with an absorption maximum at 650 nm will be formed. The assay was applied to the determination of dichlorvos and carbofuran, and detection limits of 2.3 µg·L-1 and 1.4 µg·L-1 were obtained, respectively. Recovery experiments with spiked tap water and pears gave satisfactory relative standard deviations. Graphical abstract The blue product formed by platinum nanoparticle-catalyzed oxidation of 3,3'5,5'-tetramethylbenzidine (TMB) by H2O2 is reduced if acetylthiocholine (ATCh) is hydrolyzed by acetylcholinesterase (AChE) to form thiocholine. However, if AChE is inhibited by pesticides, color formation will recover.


Assuntos
Carbofurano/análise , Colorimetria/métodos , Diclorvós/análise , Nanopartículas Metálicas/química , Praguicidas/análise , Acetilcolinesterase/química , Acetiltiocolina/química , Benzidinas/química , Materiais Biomiméticos/química , Inibidores da Colinesterase/análise , Água Potável/análise , Peróxido de Hidrogênio/química , Limite de Detecção , Peroxidase/química , Platina/química , Tiocolina/química , Poluentes Químicos da Água/análise
17.
Anal Bioanal Chem ; 409(30): 7133-7144, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29018930

RESUMO

An electrochemical sensor based on molecularly imprinted polypyrrole (MIPPy) was developed for selective and sensitive detection of the herbicide glyphosate (Gly) in cucumber and tap water samples. The sensor was prepared via synthesis of molecularly imprinted polymers on a gold electrode in the presence of Gly as the template molecule and pyrrole as the functional monomer by cyclic voltammetry (CV). The sensor preparation conditions including the ratio of template to functional monomers, number of CV cycles in the electropolymerization process, the method of template removal, incubation time, and pH were optimized. Under the optimal experimental conditions, the DPV peak currents of hexacyanoferrate/hexacyanoferrite changed linearly with Gly concentration in the range from 5 to 800 ng mL-1, with a detection limit of 0.27 ng mL-1 (S/N = 3). The sensor was used to detect the concentration of Gly in cucumber and tap water samples, with recoveries ranging from 72.70 to 98.96%. The proposed sensor showed excellent selectivity, good stability and reversibility, and could detect the Gly in real samples rapidly and sensitively. Graphical abstract Schematic illustration of the experimental procedure to detect Gly using the MIPPy electrode.


Assuntos
Cucumis sativus/química , Glicina/análogos & derivados , Ouro/química , Polímeros/química , Pirróis/química , Poluentes Químicos da Água/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Glicina/química , Herbicidas/química , Impressão Molecular/métodos , Glifosato
18.
Artigo em Inglês | MEDLINE | ID: mdl-28918070

RESUMO

A selective analytical method for the simultaneous determination of 20 triazole fungicides and plant growth regulators in cucumber samples was developed using solid-phase extraction with specific molecularly imprinted polymers (MIPs) as adsorbents. The MIPs were successfully prepared by precipitation polymerization using triadimefon as the template molecule, methacrylic acid as the functional monomer, trimethylolpropane trimethacrylate as the crosslinker, and acetonitrile as the porogen. The performance and recognition mechanism for both the MIPs and non-molecularly imprinted polymers were evaluated using adsorption isotherms and adsorption kinetics. Liquid chromatography-tandem quadrupole mass spectrometry was used to identify and quantify the target analytes. The solid-phase extraction using the MIPs was rapid, convenient, and efficient for extraction and enrichment of the 20 triazole pesticides from cucumber samples. The recoveries obtained at three concentration levels (1, 2, and 10µgL-1) ranged from 82.3% to 117.6% with relative standard deviations of less than 11.8% (n=5) for all analytes. The limits of detection for the 20 triazole pesticides were all less than 0.4µgL-1, and were sufficient to meet international standards.


Assuntos
Cromatografia Líquida/métodos , Cucumis sativus/química , Impressão Molecular/métodos , Resíduos de Praguicidas/análise , Extração em Fase Sólida/métodos , Triazóis/análise , Limite de Detecção , Modelos Lineares , Resíduos de Praguicidas/química , Resíduos de Praguicidas/isolamento & purificação , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos , Triazóis/química , Triazóis/isolamento & purificação
19.
Anal Biochem ; 530: 87-93, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499497

RESUMO

The chemiluminescence enzyme immunoassay (CLEIA) method responds differently to various sample matrices because of the matrix effect. In this work, the CLEIA method was coupled with molecularly imprinted polymers (MIPs) synthesized by precipitation polymerization to study the matrix effect. The sample recoveries ranged from 72.62% to 121.89%, with a relative standard deviation (RSD) of 3.74-18.14%.The ratio of the sample matrix-matched standard curve slope rate to the solvent standard curve slope was 1.21, 1.12, 1.17, and 0.85 for apple, rice, orange and cabbage in samples pretreated with the mixture of PSA and C18. However, the ratio of sample (apple, rice, orange, and cabbage) matrix-matched standard-MIPs curve slope rate to the solvent standard curve was 1.05, 0.92, 1.09, and 1.05 in samples pretreated with MIPs, respectively. The results demonstrated that the matrices of the samples greatly interfered with the detection of parathion residues by CLEIA. The MIPs bound specifically to the parathion in the samples and eliminated the matrix interference effect. Therefore, the CLEIA method have successfully applied MIPs in sample pretreatment to eliminate matrix interference effects and provided a new sensitive assay for agro-products.


Assuntos
Técnicas Imunoenzimáticas/métodos , Medições Luminescentes/métodos , Impressão Molecular/métodos , Paration/análise , Paration/isolamento & purificação , Polímeros/química , Extração em Fase Sólida/métodos , Brassica/química , Citrus sinensis/química , Malus/química , Oryza/química , Paration/química
20.
Food Chem ; 132(1): 502-7, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26434323

RESUMO

A method has been developed for the simultaneous determination of the concentration of nonylphenol (4-NP), nonylphenol monoethoxylates (NP1EO) and nonylphenol diethoxylates (NP2EO) in vegetables and crops by liquid chromatography-tandem quadrupole mass spectrometry (HPLC-MS/MS). These target compounds were extracted from vegetable and crop samples with acetonitrile, and then the extracts were cleaned using solid phase extraction with graphitised carbon black tandem primary secondary amine (PSA) cartridges. The MS method enabled highly reliable identification by monitoring the corresponding ammonium adduct [M+NH4](+) in the positive mode for NP1EO and NP2EO, and the deprotonated molecule [M-H](-) in the negative mode for 4-NP. Recoveries for the spiked samples ranged from 65% to 118%. The limit of detection (LOD) of 4-NP, NP1EO and NP2EO was 3, 5 and 0.1µgkg(-1), respectively. This method would be useful for the quick and routine detection of the residues of 4-NP, NP1EO and NP2EO in vegetables and crops.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Produtos Agrícolas/química , Etilenoglicóis/química , Espectrometria de Massas em Tandem/métodos , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA