Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(9)2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30158457

RESUMO

Cardiotonic steroids (CTS) are Na⁺/K⁺-ATPase (NKA) ligands that are elevated in volume-expanded states and associated with cardiac and renal dysfunction in both clinical and experimental settings. We test the hypothesis that the CTS telocinobufagin (TCB) promotes renal dysfunction in a process involving signaling through the NKA α-1 in the following studies. First, we infuse TCB (4 weeks at 0.1 µg/g/day) or a vehicle into mice expressing wild-type (WT) NKA α-1, as well as mice with a genetic reduction (~40%) of NKA α-1 (NKA α-1+/-). Continuous TCB infusion results in increased proteinuria and cystatin C in WT mice which are significantly attenuated in NKA α-1+/- mice (all p < 0.05), despite similar increases in blood pressure. In a series of in vitro experiments, 24-h treatment of HK2 renal proximal tubular cells with TCB results in significant dose-dependent increases in both Collagens 1 and 3 mRNA (2-fold increases at 10 nM, 5-fold increases at 100 nM, p < 0.05). Similar effects are seen in primary human renal mesangial cells. TCB treatment (100 nM) of SYF fibroblasts reconstituted with cSrc results in a 1.5-fold increase in Collagens 1 and 3 mRNA (p < 0.05), as well as increases in both Transforming Growth factor beta (TGFb, 1.5 fold, p < 0.05) and Connective Tissue Growth Factor (CTGF, 2 fold, p < 0.05), while these effects are absent in SYF cells without Src kinase. In a patient study of subjects with chronic kidney disease, TCB is elevated compared to healthy volunteers. These studies suggest that the pro-fibrotic effects of TCB in the kidney are mediated though the NKA-Src kinase signaling pathway and may have relevance to volume-overloaded conditions, such as chronic kidney disease where TCB is elevated.


Assuntos
Bufanolídeos/farmacologia , Fibrose/metabolismo , Nefropatias/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Bufanolídeos/metabolismo , Linhagem Celular , Glicogênio Sintase Quinase 3 beta/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Ouabaína/farmacologia , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Suínos
2.
Cureus ; 9(11): e1854, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29372128

RESUMO

Mirizzi syndrome, also known as extrinsic biliary compression syndrome, is a rare clinical entity in which the common bile duct is obstructed by compression by the impaction of one or more gallstones in the cystic duct or gallbladder infundibulum. This case illustrates an absolutely asymptomatic presentation of Mirizzi syndrome in a 62-year-old, otherwise healthy, woman. Mirizzi syndrome was treated with preemptive laparotomy cholecystectomy. The present case is exemplary for careful evaluation with the proper index of suspicion in establishment of preoperative diagnosis as well as prompt treatment prior to development of complications.

3.
Nat Med ; 19(5): 576-85, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23563705

RESUMO

Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism. The presence of specific bacterial taxa in human feces was associated with both plasma TMAO concentration and dietary status. Plasma L-carnitine levels in subjects undergoing cardiac evaluation (n = 2,595) predicted increased risks for both prevalent cardiovascular disease (CVD) and incident major adverse cardiac events (myocardial infarction, stroke or death), but only among subjects with concurrently high TMAO levels. Chronic dietary L-carnitine supplementation in mice altered cecal microbial composition, markedly enhanced synthesis of TMA and TMAO, and increased atherosclerosis, but this did not occur if intestinal microbiota was concurrently suppressed. In mice with an intact intestinal microbiota, dietary supplementation with TMAO or either carnitine or choline reduced in vivo reverse cholesterol transport. Intestinal microbiota may thus contribute to the well-established link between high levels of red meat consumption and CVD risk.


Assuntos
Aterosclerose/etiologia , Carnitina/metabolismo , Intestinos/microbiologia , Metagenoma , Animais , Aterosclerose/microbiologia , Aterosclerose/fisiopatologia , Carnitina/química , Colesterol/metabolismo , Colina/química , Desmosterol/metabolismo , Feminino , Humanos , Macrófagos/metabolismo , Espectrometria de Massas , Carne , Metilaminas/sangue , Metilaminas/metabolismo , Camundongos , Camundongos Knockout , RNA/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA