Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (205)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38619239

RESUMO

The pathophysiology of heart failure with preserved ejection fraction (HFpEF) driven by lipotoxicity is incompletely understood. Given the urgent need for animal models that accurately mimic cardio-metabolic HFpEF, a hyperlipidemia-induced murine model was developed by reverse engineering phenotypes seen in HFpEF patients. This model aimed to investigate HFpEF, focusing on the interplay between lipotoxicity and metabolic syndrome. Hyperlipidemia was induced in wild-type (WT) mice on a 129J strain background through bi-weekly intraperitoneal injections of poloxamer-407 (P-407), a block co-polymer that blocks lipoprotein lipase, combined with a single intravenous injection of adeno-associated virus 9-cardiac troponin T-low-density lipoprotein receptor (AAV9-cTnT-LDLR). Extensive assessments were conducted between 4 and 8 weeks post-treatment, including echocardiography, blood pressure recording, whole-body plethysmography, echocardiography (ECG) telemetry, activity wheel monitoring (AWM), and biochemical and histological analyses. The LDLR/P-407 mice exhibited distinctive features at four weeks, including diastolic dysfunction, preserved ejection fraction, and increased left ventricular wall thickness. Notably, blood pressure and renal function remained within normal ranges. Additionally, ECG and AWM revealed heart blocks and reduced activity, respectively. Diastolic function deteriorated at eight weeks, accompanied by a significant decline in respiratory rates. Further investigation into the double treatment model revealed elevated fibrosis, wet/dry lung ratios, and heart weight/body weight ratios. The LDLR/P-407 mice exhibited xanthelasmas, ascites, and cardiac ischemia. Interestingly, sudden deaths occurred between 6 and 12 weeks post-treatment. The murine HFpEF model offers a valuable and promising experimental resource for elucidating the intricacies of metabolic syndrome contributing to diastolic dysfunction within the context of lipotoxicity-mediated HFpEF.


Assuntos
Insuficiência Cardíaca , Hiperlipidemias , Síndrome Metabólica , Humanos , Animais , Camundongos , Insuficiência Cardíaca/etiologia , Modelos Animais de Doenças , Volume Sistólico
2.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300707

RESUMO

Geleophysic dysplasia-1 (GD1) is an autosomal recessive disorder caused by ADAMTS-like 2 (ADAMTSL2) variants. It is characterized by distinctive facial features, limited joint mobility, short stature, brachydactyly, and life-threatening cardiorespiratory complications. The clinical spectrum spans from perinatal lethality to milder adult phenotypes. We developed and characterized cellular and mouse models, to replicate the genetic profile of a patient who is compound heterozygous for 2 ADAMTSL2 variants, namely p.R61H and p.A165T. The impairment of ADAMTSL2 secretion was observed in both variants, but p.A165T exhibited a more severe impact. Mice carrying different allelic combinations revealed a spectrum of phenotypic severity, from lethality in knockout homozygotes to mild growth impairment observed in adult p.R61H homozygotes. Homozygous and hemizygous p.A165T mice survived but displayed severe respiratory and cardiac dysfunction. The respiratory dysfunction mainly affected the expiration phase, and some of these animals had microscopic post-obstructive pneumonia. Echocardiograms and MRI studies revealed a significant systolic dysfunction, accompanied by a reduction of the aortic root size. Histology verified the presence of hypertrophic cardiomyopathy with myocyte hypertrophy, chondroid metaplasia, and mild interstitial fibrosis. This study revealed a substantial correlation between the degree of impaired ADAMTSL2 secretion and the severity of the observed phenotype in GD1.


Assuntos
Proteínas ADAMTS , Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Adulto , Humanos , Animais , Camundongos , Proteínas ADAMTS/genética , Doenças do Desenvolvimento Ósseo/genética , Mutação , Fenótipo
3.
Proc Natl Acad Sci U S A ; 120(48): e2308342120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37983492

RESUMO

COVID-19 pneumonia causes acute lung injury and acute respiratory distress syndrome (ALI/ARDS) characterized by early pulmonary endothelial and epithelial injuries with altered pulmonary diffusing capacity and obstructive or restrictive physiology. Growth hormone-releasing hormone receptor (GHRH-R) is expressed in the lung and heart. GHRH-R antagonist, MIA-602, has been reported to modulate immune responses to bleomycin lung injury and inflammation in granulomatous sarcoidosis. We hypothesized that MIA-602 would attenuate rVSV-SARS-CoV-2-induced pulmonary dysfunction and heart injury in a BSL-2 mouse model. Male and female K18-hACE2tg mice were inoculated with SARS-CoV-2/USA-WA1/2020, BSL-2-compliant recombinant VSV-eGFP-SARS-CoV-2-Spike (rVSV-SARS-CoV-2), or PBS, and lung viral load, weight loss, histopathology, and gene expression were compared. K18-hACE2tg mice infected with rVSV-SARS-CoV-2 were treated daily with subcutaneous MIA-602 or vehicle and conscious, unrestrained plethysmography performed on days 0, 3, and 5 (n = 7 to 8). Five days after infection mice were killed, and blood and tissues collected for histopathology and protein/gene expression. Both native SARS-CoV-2 and rVSV-SARS-CoV-2 presented similar patterns of weight loss, infectivity (~60%), and histopathologic changes. Daily treatment with MIA-602 conferred weight recovery, reduced lung perivascular inflammation/pneumonia, and decreased lung/heart ICAM-1 expression compared to vehicle. MIA-602 rescued altered respiratory rate, increased expiratory parameters (Te, PEF, EEP), and normalized airflow parameters (Penh and Rpef) compared to vehicle, consistent with decreased airway inflammation. RNASeq followed by protein analysis revealed heightened levels of inflammation and end-stage necroptosis markers, including ZBP1 and pMLKL induced by rVSV-SARS-CoV-2, that were normalized by MIA-602 treatment, consistent with an anti-inflammatory and pro-survival mechanism of action in this preclinical model of COVID-19 pneumonia.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Camundongos , Masculino , Feminino , Animais , SARS-CoV-2 , COVID-19/patologia , Pulmão/patologia , Inflamação/patologia , Síndrome do Desconforto Respiratório/patologia , Redução de Peso , Camundongos Transgênicos , Modelos Animais de Doenças
4.
BMC Nephrol ; 24(1): 300, 2023 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828432

RESUMO

BACKGROUND: Alport syndrome (AS) is caused by mutations in type IV collagen genes that typically target and compromise the integrity of basement membranes in kidney, ocular, and sensorineural cochlear tissues. Type IV and V collagens are also integral components of arterial walls, and whereas collagenopathies including AS are implicated in aortic disease, the incidence of aortic aneurysm in AS is unknown probably because of underreporting. Consequently, AS is not presently considered an independent risk factor for aortic aneurysm and more detailed case studies including histological evidence of basement membrane abnormalities are needed to determine such a possible linkage. CASE PRESENTATION: Here, we present unique histopathological findings of an ascending aortic aneurysm collected at the time of surgery from an AS patient wherein hypertension was the only other known risk factor. CONCLUSIONS: The studies reveal classical histological features of aortic aneurysm, including atheroma, lymphocytic infiltration, elastin disruption, and myxoid degeneration with probable AS association.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma Aórtico , Nefrite Hereditária , Humanos , Nefrite Hereditária/complicações , Nefrite Hereditária/genética , Nefrite Hereditária/patologia , Rim/patologia , Colágeno Tipo IV/genética , Aneurisma Aórtico/diagnóstico por imagem , Aneurisma Aórtico/genética
5.
J Am Heart Assoc ; 11(17): e027216, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36056728

RESUMO

Background The pathways of diastolic dysfunction and heart failure with preserved ejection fraction driven by lipotoxicity with metabolic syndrome are incompletely understood. Thus, there is an urgent need for animal models that accurately mimic the metabolic and cardiovascular phenotypes of this phenogroup for mechanistic studies. Methods and Results Hyperlipidemia was induced in WT-129 mice by 4 weeks of biweekly poloxamer-407 intraperitoneal injections with or without a single intravenous injection of adeno-associatedvirus 9-cardiac troponin T-low-density lipoprotein receptor (n=31), or single intravenous injection with adeno-associatedvirus 9-cardiac troponin T-low-density lipoprotein receptor alone (n=10). Treatment groups were compared with untreated or placebo controls (n=37). Echocardiography, blood pressure, whole-body plethysmography, ECG telemetry, activity wheel monitoring, and biochemical and histological changes were assessed at 4 to 8 weeks. At 4 weeks, double treatment conferred diastolic dysfunction, preserved ejection fraction, and increased left ventricular wall thickness. Blood pressure and whole-body plethysmography results were normal, but respiration decreased at 8 weeks (P<0.01). ECG and activity wheel monitoring, respectively, indicated heart block and decreased exercise activity (P<0.001). Double treatment promoted elevated myocardial lipids including total cholesterol, fibrosis, increased wet/dry lung (P<0.001) and heart weight/body weight (P<0.05). Xanthelasma, ascites, and cardiac ischemia were evident in double and single (p407) groups. Sudden death occurred between 6 and 12 weeks in double and single (p407) treatment groups. Conclusions We present a novel model of heart failure with preserved ejection fraction driven by dyslipidemia where mice acquire diastolic dysfunction, arrhythmia, cardiac hypertrophy, fibrosis, pulmonary congestion, exercise intolerance, and preserved ejection fraction in the absence of obesity, hypertension, kidney disease, or diabetes. The model can be applied to dissect pathways of metabolic syndrome that drive diastolic dysfunction in this lipotoxicity-mediated heart failure with preserved ejection fraction phenogroup mimic.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Hiperlipidemias , Síndrome Metabólica , Animais , Modelos Animais de Doenças , Hiperlipidemias/complicações , Lipoproteínas LDL , Camundongos , Volume Sistólico/fisiologia , Troponina T , Função Ventricular Esquerda/fisiologia
6.
Pharmaceutics ; 13(12)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34959441

RESUMO

Gene therapy is a good alternative for determined congenital disorders; however, there are numerous limitations for gene delivery in vivo including targeted cellular uptake, intracellular trafficking, and transport through the nuclear membrane. Here, a modified G5 polyamidoamine (G5 PAMAM) dendrimer-DNA complex was developed, which will allow cell-specific targeting to skeletal muscle cells and transport the DNA through the intracellular machinery and the nuclear membrane. The G5 PAMAM nanocarrier was modified with a skeletal muscle-targeting peptide (SMTP), a DLC8-binding peptide (DBP) for intracellular transport, and a nuclear localization signaling peptide (NLS) for nuclear uptake, and polyplexed with plasmid DNA containing the GFP-tagged microdystrophin (µDys) gene. The delivery of µDys has been considered as a therapeutic modality for patients suffering from a debilitating Duchenne muscular dystrophy (DMD) disorder. The nanocarrier-peptide-DNA polyplexes were prepared with different charge ratios and characterized for stability, size, surface charge, and cytotoxicity. Using the optimized nanocarrier polyplexes, the transfection efficiency in vitro was determined by demonstrating the expression of the GFP and the µDys protein using fluorescence and Western blotting studies, respectively. Protein expression in vivo was determined by injecting an optimal nanocarrier polyplex formulation to Duchenne model mice, mdx4Cv. Ultimately, these nanocarrier polyplexes will allow targeted delivery of the microdystrophin gene to skeletal muscle cells and result in improved muscle function in Duchenne muscular dystrophy patients.

7.
ACS Appl Bio Mater ; 4(1): 229-251, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34250454

RESUMO

Polymeric biomaterials have been used in a variety of applications, like cargo delivery and tissue scaffolding, because they are easily synthesized and can be adapted to many systems. However, there is still a need to further enhance and improve their functions to progress their use in the biomedical field. A promising solution is to modify the polymer surfaces with peptides that can increase biocompatibility, cellular interactions, and receptor targeting. In recent years, peptide modifications have been used to overcome many challenges to polymer biomaterial development. This review discusses recent progress in developing peptide-modified polymers for therapeutic applications including cell-specific targeting and tissue engineering. Furthermore, we will explore some of the most frequently studied base components of these biomaterials.


Assuntos
Biopolímeros/química , Peptídeos/química , Animais , Células Apresentadoras de Antígenos/citologia , Células Apresentadoras de Antígenos/metabolismo , Biopolímeros/metabolismo , Biopolímeros/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Nanopartículas/química , Nanopartículas/metabolismo , Engenharia Tecidual , Alicerces Teciduais/química
8.
Front Physiol ; 11: 928, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903540

RESUMO

BACKGROUND: Heart transplant is the gold standard therapy for patients with advanced heart failure. Over 5,500 heart transplants are performed every year worldwide. Cardiac allograft vasculopathy (CAV) is a common complication post-heart transplant which reduces survival and often necessitates heart retransplantation. Post-transplant follow-up requires serial coronary angiography and endomyocardial biopsy (EMB) for CAV and allograft rejection screening, respectively; both of which are invasive procedures. This study aims to determine whether osteopontin (OPN) protein, a fibrosis marker often present in chronic heart disease, represents a novel biomarker for CAV. METHODS: Expression of OPN was analyzed in cardiac tissue obtained from patients undergoing heart retransplantation using immunofluorescence imaging (n = 20). Tissues from native explanted hearts and three serial follow-up EMB samples of transplanted hearts were also analyzed in five of these patients. RESULTS: Fifteen out of 20 patients undergoing retransplantation had CAV. 13/15 patients with CAV expressed nuclear OPN. 5/5 patients with multiple tissue samples expressed nuclear OPN in both 1 st and 2 nd explanted hearts, while 0/5 expressed nuclear OPN in any of the follow-up EMBs. 4/5 of these patients had an initial diagnosis of dilated cardiomyopathy (DCM). CONCLUSION: Nuclear localization of OPN in cardiomyocytes of patients with CAV was evident at the time of cardiac retransplant as well as in patients with DCM at the time of the 1 st transplant. The results implicate nuclear OPN as a novel biomarker for severe CAV and DCM.

9.
Sci Rep ; 10(1): 12368, 2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32704023

RESUMO

Preterm infants with bronchopulmonary dysplasia (BPD) and pulmonary hypertension (PH) have accelerated lung aging and poor long-term outcomes. Klotho is an antiaging protein that modulates oxidative stress, angiogenesis and fibrosis. Here we test the hypothesis that decreased cord Klotho levels in preterm infants predict increased BPD-PH risk and early Klotho supplementation prevents BPD-like phenotype and PH in rodents exposed to neonatal hyperoxia. In experiment 1, Klotho levels were measured in cord blood of preterm infants who were enrolled in a longitudinal cohort study. In experiment 2, using an experimental BPD-PH model, rat pups exposed to room air or hyperoxia (85% O2) were randomly assigned to receive every other day injections of recombinant Klotho or placebo. The effect of Klotho on lung structure, PH and cardiac function was assessed. As compared to controls, preterm infants with BPD or BPD-PH had decreased cord Klotho levels. Early Klotho supplementation in neonatal hyperoxia-exposed rodents preserved lung alveolar and vascular structure, attenuated PH, reduced pulmonary vascular remodeling and improved cardiac function. Together, these findings have important implications as they suggest that perinatal Klotho deficiency contributes to BPD-PH risk and strategies that preserve Klotho levels, may improve long-term cardiopulmonary outcomes in preterm infants.


Assuntos
Displasia Broncopulmonar/sangue , Sangue Fetal/metabolismo , Glucuronidase/sangue , Hipertensão Pulmonar/sangue , Recém-Nascido Prematuro/sangue , Biomarcadores/sangue , Displasia Broncopulmonar/fisiopatologia , Feminino , Humanos , Hipertensão Pulmonar/fisiopatologia , Recém-Nascido , Proteínas Klotho , Estudos Longitudinais , Masculino
10.
Int J Mol Sci ; 20(6)2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30897705

RESUMO

Cardiac ß2-adrenergic receptors (ARs) are known to inhibit collagen production and fibrosis in cardiac fibroblasts and myocytes. The ß2AR is a Gs protein-coupled receptor (GPCR) and, upon its activation, stimulates the generation of cyclic 3',5'-adenosine monophosphate (cAMP). cAMP has two effectors: protein kinase A (PKA) and the exchange protein directly activated by cAMP (Epac). Epac1 has been shown to inhibit cardiac fibroblast activation and fibrosis. Osteopontin (OPN) is a ubiquitous pro-inflammatory cytokine, which also mediates fibrosis in several tissues, including the heart. OPN underlies several cardiovascular pathologies, including atherosclerosis and cardiac adverse remodeling. We found that the cardiotoxic hormone aldosterone transcriptionally upregulates OPN in H9c2 rat cardiac myoblasts-an effect prevented by endogenous ß2AR activation. Additionally, CRISPR-mediated OPN deletion enhanced cAMP generation in response to both ß1AR and ß2AR activation in H9c2 cardiomyocytes, leading to the upregulation of Epac1 protein levels. These effects rendered ß2AR stimulation capable of completely abrogating transforming growth factor (TGF)-ß-dependent fibrosis in OPN-lacking H9c2 cardiomyocytes. Finally, OPN interacted constitutively with Gαs subunits in H9c2 cardiac cells. Thus, we uncovered a direct inhibitory role of OPN in cardiac ß2AR anti-fibrotic signaling via cAMP/Epac1. OPN blockade could be of value in the treatment and/or prevention of cardiac fibrosis.


Assuntos
AMP Cíclico/metabolismo , Fibrose/metabolismo , Miócitos Cardíacos/metabolismo , Osteopontina/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animais , Western Blotting , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/fisiologia , AMP Cíclico/genética , Fibrose/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Imunoprecipitação , Osteopontina/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores Adrenérgicos beta/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
J Vis Exp ; (136)2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29985358

RESUMO

Mitochondrial dysfunction in the renal tubular epithelial cells (TECs) can lead to renal fibrosis, a major cause of chronic kidney disease (CKD). Therefore, assessing mitochondrial function in primary TECs may provide valuable insight into the bioenergetic status of the cells, providing insight into the pathophysiology of CKD. While there are a number of complex protocols available for the isolation and purification of proximal tubules in different species, the field lacks a cost-effective method optimized for tubular cell isolation without the need for purification. Here, we provide an isolation protocol that allows for studies focusing on both primary mouse proximal and distal renal TECs. In addition to cost-effective reagents and minimal animal procedures required in this protocol, the isolated cells maintain high energy levels after isolation and can be sub-cultured up to four passages, allowing for continuous studies. Furthermore, using a high throughput extracellular flux analyzer, we assess the mitochondrial respiration directly in the isolated TECs in a 96-well plate for which we provide recommendations for the optimization of cell density and compound concentration. These observations suggest that this protocol can be used for renal tubular ex vivo studies with a consistent, well-standardized production of renal TECs. This protocol may have broader future applications to study mitochondrial dysfunction associated with renal disorders for drug discovery or drug characterization purposes.


Assuntos
Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Rim/metabolismo , Animais , Túbulos Renais/citologia , Camundongos
12.
JCI Insight ; 3(6)2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29563333

RESUMO

Alport syndrome is a rare hereditary renal disorder with no etiologic therapy. We found that osteopontin (OPN) is highly expressed in the renal tubules of the Alport mouse and plays a causative pathological role. OPN genetic deletion ameliorated albuminuria, hypertension, tubulointerstitial proliferation, renal apoptosis, and hearing and visual deficits in the Alport mouse. In Alport renal tubules we found extensive cholesterol accumulation and increased protein expression of dynamin-3 (DNM3) and LDL receptor (LDLR) in addition to dysmorphic mitochondria with defective bioenergetics. Increased pathological cholesterol influx was confirmed by a remarkably increased uptake of injected DiI-LDL cholesterol by Alport renal tubules, and by the improved lifespan of the Alport mice when crossed with the Ldlr-/- mice with defective cholesterol influx. Moreover, OPN-deficient Alport mice demonstrated significant reduction of DNM3 and LDLR expression. In human renal epithelial cells, overexpressing DNM3 resulted in elevated LDLR protein expression and defective mitochondrial respiration. Our results suggest a potentially new pathway in Alport pathology where tubular OPN causes DNM3- and LDLR-mediated enhanced cholesterol influx and impaired mitochondrial respiration.


Assuntos
Autoantígenos/metabolismo , Colágeno Tipo IV/metabolismo , Túbulos Renais/metabolismo , Mitocôndrias/metabolismo , Nefrite Hereditária/metabolismo , Osteopontina/metabolismo , Albuminúria/metabolismo , Animais , Apoptose , Autoantígenos/genética , Pressão Sanguínea , Colesterol/metabolismo , Colágeno/metabolismo , Colágeno Tipo IV/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Dinamina III/metabolismo , Células Epiteliais/metabolismo , Ácidos Graxos/metabolismo , Deleção de Genes , Testes Auditivos , Humanos , Hipertensão/metabolismo , Rim/metabolismo , Rim/patologia , Túbulos Renais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nefrite Hereditária/genética , Osteopontina/genética , Receptores de LDL , Smegmamorpha/metabolismo , Transcriptoma , Triglicerídeos/análise
13.
PLoS One ; 12(11): e0187576, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29107942

RESUMO

Despite a robust capacity for adult neurogenesis in the olfactory epithelium (OE), olfactory sensory losses are common. Identification of mechanisms regulating adult OE neurogenesis is, therefore, of interest. MicroRNAs (miRNAs) are broadly important in regulating vertebrate neurodevelopment, and are required in embryonic olfactory differentiation. We report here that a panel of miRNAs is differentially expressed by either progenitor or progeny cells in the regenerating mouse OE. Progenitor cells were purified from lesioned OE based on c-Kit expression, and miRNA expression was assayed in c-Kit (+) and c-Kit (-) cell populations. 28 miRNAs were significantly downregulated by at least 4 fold in the c-Kit (+) fraction, which marks the globose basal progenitor cell population. In addition, 10 miRNAs were upregulated in these basal cells. MiR-486, the most strongly downregulated miRNA identified, was further characterized to verify results. MiR-486 expression was confirmed in the c-Kit (-) OE layers using in situ hybridization. As a functional assay, over-expression of miR-486 in purified c-Kit (+) basal cell cultures resulted in a reduction in neurogenesis, consistent with a possible negative feedback regulatory model. Our data provide new insights regarding miRNA expression and function during adult OE neurogenesis, and identify candidate miRNAs warranting further study.


Assuntos
MicroRNAs/genética , Mucosa Olfatória/metabolismo , Animais , Células Cultivadas , Regulação para Baixo , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Mucosa Olfatória/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo
14.
Cardiovasc Res ; 113(6): 633-643, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28453726

RESUMO

AIMS: Cardiac myocyte hypertrophy, the main compensatory response to chronic stress in the heart often progresses to a state of decompensation that can lead to heart failure. Osteopontin (OPN) is an effector for extracellular signalling that induces myocyte growth and fibrosis. Although increased OPN activity has been observed in stressed myocytes and fibroblasts, the detailed and long term effects of blocking OPN signalling on the heart remain poorly defined. Targeting cardiac OPN protein by an RNA aptamer may be beneficial for tuning down OPN pathologic signalling. We aimed to demonstrate the therapeutic effects of an OPN RNA aptamer on cardiac dysfunction. METHODS AND RESULTS: In vivo, we show that in a mouse model of pressure overload, treating at the time of surgeries with an OPN aptamer prevented cardiomyocyte hypertrophy and cardiac fibrosis, blocked OPN downstream signalling (PI3K and Akt phosphorylation), reduced expression of extracellular matrix (Lum, Col3a1, Fn1) and hypertrophy (Nppa, Nppb) genes, and prevented cardiac dysfunction. Treating at two months post-surgeries with the OPN aptamer reversed cardiac dysfunction and fibrosis and myocyte hypertrophy. While genetic homozygous deletion of OPN reduced myocardial wall thickness, surprisingly cardiac function and myocardial fibrosis, specifically collagen deposition and myofibroblast infiltration, were worse compared with wild type mice at three months of pressure overload. CONCLUSION: Taken together, these data demonstrate that tuning down cardiac OPN signalling by an OPN RNA aptamer is a novel and effective approach for preventing cardiac hypertrophy and fibrosis, improving cardiac function, and reversing pressure overload-induced heart failure.


Assuntos
Aorta/fisiopatologia , Aptâmeros de Nucleotídeos/metabolismo , Pressão Arterial , Insuficiência Cardíaca/prevenção & controle , Hipertrofia Ventricular Esquerda/prevenção & controle , Miocárdio/metabolismo , Osteopontina/metabolismo , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Aorta/cirurgia , Aptâmeros de Nucleotídeos/genética , Colágeno Tipo III/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Predisposição Genética para Doença , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Ligadura , Lumicana/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocárdio/patologia , Osteopontina/deficiência , Osteopontina/genética , Fenótipo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Tempo , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia
15.
Transl Cancer Res ; 6(Suppl 6): S949-S952, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30613484
16.
Cardiovasc Res ; 106(1): 131-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25678587

RESUMO

AIMS: Activation of an osteogenic transcriptional program contributes to the initiation of aortic calcification in atherosclerosis. The role of microRNAs in regulating aortic calcification is understudied. We tested the hypothesis that miR-30e regulates an osteogenic program in bone marrow-derived mesenchymal stem cells (MSCs), aortic smooth muscle cells (SMCs), and ApoE(-/-) mice. METHODS AND RESULTS: In aortas of wild-type mice, we found that miR-30e is highly expressed in medial SMCs. In aortas of old ApoE(-/-) mice, we found that miR-30e transcripts are down-regulated in an inverse relation to the osteogenic markers Runx2, Opn, and Igf2. In vitro, miR-30e over-expression reduced the proliferation of MSCs and SMCs while increasing adipogenic differentiation of MSCs and smooth muscle differentiation of SMCs. In MSCs and SMCs over-expressing miR-30e, microarrays and qPCR showed repression of an osteogenic gene panel including Igf2. Inhibiting miR-30e in MSCs increased Igf2 transcripts. In SMCs, IGF2 recombinant protein rescued miR-30e-repressed osteogenic differentiation. Luciferase and mutagenesis assays showed binding of miR-30e to a novel and essential site at the 3'UTR of Igf2. In ApoE(-/-) mice, injections of antimiR-30e oligos increased Igf2 expression in the aortas and livers and significantly enhanced OPN protein expression and calcium deposition in aortic valves. CONCLUSION: miR-30e represses the osteogenic program in MSCs and SMCs by targeting IGF2 and drives their differentiation into adipogenic or smooth muscle lineage, respectively. Our data suggest that down-regulation of miR-30e in aortas with age and atherosclerosis triggers vascular calcification. The miR-30e pathway plays an important regulatory role in vascular diseases.


Assuntos
Apolipoproteínas E/deficiência , Fator de Crescimento Insulin-Like II/fisiologia , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/fisiologia , Músculo Liso Vascular/fisiologia , Osteogênese/fisiologia , Envelhecimento/fisiologia , Animais , Aorta/citologia , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Células da Medula Óssea/citologia , Calcinose/fisiopatologia , Diferenciação Celular/fisiologia , Células Cultivadas , Modelos Animais de Doenças , Regulação para Baixo/fisiologia , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia
17.
BMC Genomics ; 15: 303, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24758227

RESUMO

BACKGROUND: The endosteum of the bone marrow provides a specialized hypoxic niche that may serve to preserve the integrity, pluripotency, longevity and stemness of resident mesenchymal stem cells (MSCs). To explore the molecular genetic consequences of such a niche we subjected human (h) MSCs to a pO2 of 4 mmHg and analyzed global gene expression and alternative splicing (AS) by genome-exon microarray and RT-qPCR, and phenotype by western blot and immunostaining. RESULTS: Out of 446 genes differentially regulated by >2.5-fold, down-regulated genes outnumbered up-regulated genes by 243:203. Exon analyses revealed 60 hypoxia-regulated AS events with splice indices (SI) >1.0 from 53 genes and a correlation between high SI and degree of transcript regulation. Parallel analyses of a publicly available AS study on human umbilical vein endothelial cells (HUVECs) showed that there was a strong cell-specific component with only 11 genes commonly regulated in hMSCs and HUVECs and 17 common differentially spliced genes. Only 3 genes were differentially responsive to hypoxia at the gene (>2.0) and AS levels in both cell types. Functional assignments revealed unique profiles of gene expression with complex regulation of differentiation, extracellular matrix, intermediate filament and metabolic marker genes. Antioxidant genes, striated muscle genes and insulin/IGF-1 signaling intermediates were down-regulated. There was a coordinate induction of 9 out of 12 acidic keratins that along with other epithelial and cell adhesion markers implies a partial mesenchymal to epithelial transition. CONCLUSIONS: We conclude that severe hypoxia confers a quiescent phenotype in hMSCs that is reflected by both the transcriptome profile and gene-specific changes of splicosome actions. The results reveal that severe hypoxia imposes markedly different patterns of gene regulation of MSCs compared with more moderate hypoxia. This is the first study to report hypoxia-regulation of AS in stem/progenitor cells and the first molecular genetic characterization of MSC in a hypoxia-induced quiescent immobile state.


Assuntos
Processamento Alternativo , Regulação da Expressão Gênica , Hipóxia/genética , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Proliferação de Células , Glucose/metabolismo , Humanos , Células-Tronco Mesenquimais/citologia , Análise de Sequência com Séries de Oligonucleotídeos
18.
Am J Physiol Heart Circ Physiol ; 306(5): H641-53, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24414074

RESUMO

Aging has been associated with pathological vascular remodeling and increased neointimal hyperplasia. The understanding of how aging exacerbates this process is fundamental to prevent cardiovascular complications in the elderly. This study proposes a mechanism by which aging sustains leukocyte adhesion, vascular inflammation, and increased neointimal thickness after injury. The effect of aging on vascular remodeling was assessed in the rat balloon injury model using microarray analysis, immunohistochemistry, and LINCOplex assays. The injured arteries in aging rats developed thicker neointimas than those in younger animals, and this significantly correlated with a higher number of tissue macrophages and increased vascular IL-18. Indeed, IL-18 was 23-fold more abundant in the injured vasculature of aged animals compared with young rats, while circulating levels were similar in both groups of animals. The depletion of macrophages in aged rats with clodronate liposomes ameliorated vascular accumulation of IL-18 and significantly decreased neointimal formation. IL-18 was found to inhibit apoptosis of vascular smooth muscle cells (VSMC) and macrophages, thus favoring both the formation and inflammation of the neointima. In addition, injured arteries of aged rats accumulated 18-fold more fibrinogen-γ than those of young animals. Incubation of rat peritoneal macrophages with immobilized IL-18 increased leukocyte adhesion to fibrinogen and suggested a proinflammatory positive feedback loop among macrophages, VSMC, and the deposition of fibrinogen during neointimal hyperplasia. In conclusion, our data reveal that concentration changes in vascular cytokine and fibrinogen following injury in aging rats contribute to local inflammation and postinjury neointima formation.


Assuntos
Envelhecimento/metabolismo , Fibrinogênio/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-18/metabolismo , Macrófagos/metabolismo , Músculo Liso Vascular/metabolismo , Neointima , Comunicação Parácrina , Lesões do Sistema Vascular/metabolismo , Fatores Etários , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Apoptose , Adesão Celular , Células Cultivadas , Quimiotaxia , Ácido Clodrônico/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Hiperplasia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Monócitos/imunologia , Monócitos/metabolismo , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/patologia , Comunicação Parácrina/efeitos dos fármacos , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais , Fatores de Tempo , Lesões do Sistema Vascular/genética , Lesões do Sistema Vascular/imunologia , Lesões do Sistema Vascular/patologia , Lesões do Sistema Vascular/prevenção & controle
19.
PLoS One ; 8(11): e79133, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24236097

RESUMO

OBJECTIVE: To characterize downstream effectors of p300 acetyltransferase in the myocardium. BACKGROUND: Acetyltransferase p300 is a central driver of the hypertrophic response to increased workload, but its biological targets and downstream effectors are incompletely known. METHODS AND RESULTS: Mice expressing a myocyte-restricted transgene encoding acetyltransferase p300, previously shown to develop spontaneous hypertrophy, were observed to undergo robust compensatory blood vessel growth together with increased angiogenic gene expression. Chromatin immunoprecipitation demonstrated binding of p300 to the enhancers of the angiogenic regulators Angpt1 and Egln3. Interestingly, p300 overexpression in vivo was also associated with relative upregulation of several members of the anti-angiogenic miR-17∼92 cluster in vivo. Confirming this finding, both miR-17-3p and miR-20a were upregulated in neonatal rat ventricular myocytes following adenoviral transduction of p300. Relative expression of most members of the 17∼92 cluster was similar in all 4 cardiac chambers and in other organs, however, significant downregulation of miR-17-3p and miR-20a occurred between 1 and 8 months of age in both wt and tg mice. The decline in expression of these microRNAs was associated with increased expression of VEGFA, a validated miR-20a target. In addition, miR-20a was demonstrated to directly repress p300 expression through a consensus binding site in the p300 3'UTR. In vivo transduction of p300 resulted in repression both of p300 and of p300-induced angiogenic transcripts. CONCLUSION: p300 drives an angiogenic transcription program during hypertrophy that is fine-tuned in part through direct repression of p300 by miR-20a.


Assuntos
Vasos Coronários/fisiologia , Proteína p300 Associada a E1A/genética , Miocárdio/metabolismo , Interferência de RNA , Proteínas Angiogênicas/genética , Proteínas Angiogênicas/metabolismo , Animais , Células Cultivadas , Proteína p300 Associada a E1A/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Neovascularização Fisiológica , Ratos
20.
Biochem Biophys Res Commun ; 396(4): 915-20, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20460113

RESUMO

Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.


Assuntos
Ciclo Celular , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/metabolismo , Proteínas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas Argonautas , Proteínas de Transporte/biossíntese , Proliferação de Células , Ciclina D1/biossíntese , Quinase 8 Dependente de Ciclina/biossíntese , Ciclinas/biossíntese , Citoplasma/metabolismo , Fase G1 , Fase G2 , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mitose , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/biossíntese , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Fase S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA