Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Gastrointest Liver Physiol ; 323(4): G306-G317, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916405

RESUMO

The alternative (noncanonical) nuclear factor-κB (NF-κB) signaling pathway predominantly regulates the function of the p52/RelB heterodimer. Germline Nfkb2 deficiency in mice leads to loss of p100/p52 protein and offers protection against a variety of gastrointestinal conditions, including azoxymethane/dextran sulfate sodium (DSS)-induced colitis-associated cancer and lipopolysaccharide (LPS)-induced small intestinal epithelial apoptosis. However, the common underlying protective mechanisms have not yet been fully elucidated. We applied high-throughput RNA-Seq and proteomic analyses to characterize the transcriptional and protein signatures of the small intestinal mucosa of naïve adult Nfkb2-/- mice. Those data were validated by immunohistochemistry and quantitative ELISA using both small intestinal tissue lysates and serum. We identified a B-lymphocyte defect as a major transcriptional signature in the small intestinal mucosa and immunoglobulin A as the most downregulated protein by proteomic analysis in Nfkb2-/- mice. Small intestinal immunoglobulins were dramatically dysregulated, with undetectable levels of immunoglobulin A and greatly increased amounts of immunoglobulin M being detected. The numbers of IgA-producing, cluster of differentiation (CD)138-positive plasma cells were also reduced in the lamina propria of the small intestinal villi of Nfkb2-/- mice. This phenotype was even more striking in the small intestinal mucosa of RelB-/- mice, although these mice were equally sensitive to LPS-induced intestinal apoptosis as their RelB+/+ wild-type counterparts. NF-κB2/p52 deficiency confers resistance to LPS-induced small intestinal apoptosis and also appears to regulate the plasma cell population and immunoglobulin levels within the gut.NEW & NOTEWORTHY Novel transcriptomic analysis of murine proximal intestinal mucosa revealed an unexpected B cell signature in Nfkb2-/- mice. In-depth analysis revealed a defect in the CD38+ B cell population and a gut-specific dysregulation of immunoglobulin levels.


Assuntos
Subunidade p52 de NF-kappa B , Plasmócitos , Animais , Imunoglobulina A/metabolismo , Imunoglobulinas/metabolismo , Mucosa Intestinal/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/genética , Subunidade p52 de NF-kappa B/metabolismo , Plasmócitos/metabolismo , Proteômica
2.
Biomedicines ; 10(4)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35453507

RESUMO

The NFκB transcription factors are major regulators of innate immune responses, and NFκB signal pathway dysregulation is linked to inflammatory disease. Here, we utilised bone marrow-derived macrophages from the p65-DsRedxp/IκBα-eGFP transgenic strain to study the functional implication of xenogeneic (human) RelA(p65) protein introduced into the mouse genome. Confocal imaging showed that human RelA is expressed in the cells and can translocate to the nucleus following activation of Toll-like receptor 4. RNA sequencing of lipid A-stimulated macrophages, revealed that human RelA impacts on murine gene transcription, affecting both non-NFκB and NFκB target genes, including immediate-early and late response genes, e.g., Fos and Cxcl10. Validation experiments on NFκB targets revealed markedly reduced mRNA levels, but similar kinetic profiles in transgenic cells compared to wild-type. Enrichment pathway analysis of differentially expressed genes revealed interferon and cytokine signaling were affected. These immune response pathways were also affected in macrophages treated with tumor necrosis factor. Data suggests that the presence of xenogeneic RelA protein likely has inhibitory activity, altering specific transcriptional profiles of key molecules involved in immune responses. It is therefore essential that this information be taken into consideration when designing and interpreting future experiments using this transgenic strain.

4.
EMBO J ; 40(22): e108234, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34586646

RESUMO

DNA methylation is a fundamental epigenetic modification, important across biological processes. The maintenance methyltransferase DNMT1 is essential for lineage differentiation during development, but its functions in tissue homeostasis are incompletely understood. We show that epidermis-specific DNMT1 deletion severely disrupts epidermal structure and homeostasis, initiating a massive innate immune response and infiltration of immune cells. Mechanistically, DNA hypomethylation in keratinocytes triggered transposon derepression, mitotic defects, and formation of micronuclei. DNA release into the cytosol of DNMT1-deficient keratinocytes activated signaling through cGAS and STING, thus triggering inflammation. Our findings show that disruption of a key epigenetic mark directly impacts immune and tissue homeostasis, and potentially impacts our understanding of autoinflammatory diseases and cancer immunotherapy.


Assuntos
Metilação de DNA , Dermatite/genética , Epiderme/fisiopatologia , Nucleotidiltransferases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Aberrações Cromossômicas , Citosol/fisiologia , DNA (Citosina-5-)-Metiltransferase 1/genética , Dermatite/imunologia , Dermatite/patologia , Humanos , Imunidade Inata/genética , Helicase IFIH1 Induzida por Interferon/metabolismo , Queratinócitos/imunologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Transgênicos , Nucleotidiltransferases/genética
5.
Front Immunol ; 12: 690817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220850

RESUMO

Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.


Assuntos
Inflamação/imunologia , Interleucina-10/imunologia , Mucosa Intestinal/imunologia , Animais , Interleucina-10/deficiência , Interleucina-10/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/imunologia , Fator de Necrose Tumoral alfa/imunologia
6.
Life Sci Alliance ; 4(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33310759

RESUMO

Malignant transformation depends on genetic and epigenetic events that result in a burst of deregulated gene expression and chromatin changes. To dissect the sequence of events in this process, we used a T-cell-specific lymphoma model based on the human oncogenic nucleophosmin-anaplastic lymphoma kinase (NPM-ALK) translocation. We find that transformation of T cells shifts thymic cell populations to an undifferentiated immunophenotype, which occurs only after a period of latency, accompanied by induction of the MYC-NOTCH1 axis and deregulation of key epigenetic enzymes. We discover aberrant DNA methylation patterns, overlapping with regulatory regions, plus a high degree of epigenetic heterogeneity between individual tumors. In addition, ALK-positive tumors show a loss of associated methylation patterns of neighboring CpG sites. Notably, deletion of the maintenance DNA methyltransferase DNMT1 completely abrogates lymphomagenesis in this model, despite oncogenic signaling through NPM-ALK, suggesting that faithful maintenance of tumor-specific methylation through DNMT1 is essential for sustained proliferation and tumorigenesis.


Assuntos
Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Epigênese Genética , Linfoma/etiologia , Linfoma/metabolismo , Proteínas Tirosina Quinases/genética , Animais , Biomarcadores Tumorais , Biologia Computacional/métodos , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Epigenômica , Deleção de Genes , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Imuno-Histoquímica , Imunofenotipagem , Linfoma/tratamento farmacológico , Linfoma/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Tirosina Quinases/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Cell ; 39(1): 68-82.e9, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33186519

RESUMO

Metastases account for most cancer-related deaths, yet the mechanisms underlying metastatic spread remain poorly understood. Recent evidence demonstrates that senescent cells, while initially restricting tumorigenesis, can induce tumor progression. Here, we identify the metalloproteinase inhibitor TIMP1 as a molecular switch that determines the effects of senescence in prostate cancer. Senescence driven either by PTEN deficiency or chemotherapy limits the progression of prostate cancer in mice. TIMP1 deletion allows senescence to promote metastasis, and elimination of senescent cells with a senolytic BCL-2 inhibitor impairs metastasis. Mechanistically, TIMP1 loss reprograms the senescence-associated secretory phenotype (SASP) of senescent tumor cells through activation of matrix metalloproteinases (MMPs). Loss of PTEN and TIMP1 in prostate cancer is frequent and correlates with resistance to docetaxel and worst clinical outcomes in patients treated in an adjuvant setting. Altogether, these findings provide insights into the dual roles of tumor-associated senescence and can potentially impact the treatment of prostate cancer.


Assuntos
Docetaxel/administração & dosagem , Deleção de Genes , PTEN Fosfo-Hidrolase/genética , Neoplasias da Próstata/patologia , Inibidor Tecidual de Metaloproteinase-1/genética , Animais , Senescência Celular/efeitos dos fármacos , Docetaxel/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Transplante de Neoplasias , Células PC-3 , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo
8.
Gastroenterology ; 156(1): 145-159.e19, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273559

RESUMO

BACKGROUND & AIMS: RNase H2 is a holoenzyme, composed of 3 subunits (ribonuclease H2 subunits A, B, and C), that cleaves RNA:DNA hybrids and removes mis-incorporated ribonucleotides from genomic DNA through ribonucleotide excision repair. Ribonucleotide incorporation by eukaryotic DNA polymerases occurs during every round of genome duplication and produces the most frequent type of naturally occurring DNA lesion. We investigated whether intestinal epithelial proliferation requires RNase H2 function and whether RNase H2 activity is disrupted during intestinal carcinogenesis. METHODS: We generated mice with epithelial-specific deletion of ribonuclease H2 subunit B (H2bΔIEC) and mice that also had deletion of tumor-suppressor protein p53 (H2b/p53ΔIEC); we compared phenotypes with those of littermate H2bfl/fl or H2b/p53fl/fl (control) mice at young and old ages. Intestinal tissues were collected and analyzed by histology. We isolated epithelial cells, generated intestinal organoids, and performed RNA sequence analyses. Mutation signatures of spontaneous tumors from H2b/p53ΔIEC mice were characterized by exome sequencing. We collected colorectal tumor specimens from 467 patients, measured levels of ribonuclease H2 subunit B, and associated these with patient survival times and transcriptome data. RESULTS: The H2bΔIEC mice had DNA damage to intestinal epithelial cells and proliferative exhaustion of the intestinal stem cell compartment compared with controls and H2b/p53ΔIEC mice. However, H2b/p53ΔIEC mice spontaneously developed small intestine and colon carcinomas. DNA from these tumors contained T>G base substitutions at GTG trinucleotides. Analyses of transcriptomes of human colorectal tumors associated lower levels of RNase H2 with shorter survival times. CONCLUSIONS: In analyses of mice with disruption of the ribonuclease H2 subunit B gene and colorectal tumors from patients, we provide evidence that RNase H2 functions as a colorectal tumor suppressor. H2b/p53ΔIEC mice can be used to study the roles of RNase H2 in tissue-specific carcinogenesis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Células Epiteliais/enzimologia , Instabilidade Genômica , Neoplasias Intestinais/prevenção & controle , Intestino Delgado/enzimologia , Ribonuclease H/metabolismo , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Colite/induzido quimicamente , Colite/enzimologia , Colite/genética , Colite/patologia , Dano ao DNA , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/patologia , Feminino , Predisposição Genética para Doença , Humanos , Neoplasias Intestinais/enzimologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Intestino Delgado/patologia , Masculino , Camundongos Knockout , Fenótipo , Ribonuclease H/deficiência , Ribonuclease H/genética , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
9.
Gut ; 66(12): 2087-2097, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27694142

RESUMO

OBJECTIVE: An inadequate host response to the intestinal microbiota likely contributes to the manifestation and progression of human inflammatory bowel disease (IBD). However, molecular approaches to unravelling the nature of the defective crosstalk and its consequences for intestinal metabolic and immunological networks are lacking. We assessed the mucosal transcript levels, splicing architecture and mucosa-attached microbial communities of patients with IBD to obtain a comprehensive view of the underlying, hitherto poorly characterised interactions, and how these are altered in IBD. DESIGN: Mucosal biopsies from Crohn's disease and patients with UC, disease controls and healthy individuals (n=63) were subjected to microbiome, transcriptome and splicing analysis, employing next-generation sequencing. The three data levels were integrated by different bioinformatic approaches, including systems biology-inspired network and pathway analysis. RESULTS: Microbiota, host transcript levels and host splicing patterns were influenced most strongly by tissue differences, followed by the effect of inflammation. Both factors point towards a substantial disease-related alteration of metabolic processes. We also observed a strong enrichment of splicing events in inflamed tissues, accompanied by an alteration of the mucosa-attached bacterial taxa. Finally, we noted a striking uncoupling of the three molecular entities when moving from healthy individuals via disease controls to patients with IBD. CONCLUSIONS: Our results provide strong evidence that the interplay between microbiome and host transcriptome, which normally characterises a state of intestinal homeostasis, is drastically perturbed in Crohn's disease and UC. Consequently, integrating multiple OMICs levels appears to be a promising approach to further disentangle the complexity of IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/microbiologia , Splicing de RNA , Biópsia , Estudos de Casos e Controles , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/imunologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Humanos , Doenças Inflamatórias Intestinais/imunologia , Masculino , Splicing de RNA/genética , Splicing de RNA/imunologia , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Transcriptoma/genética , Transcriptoma/imunologia
10.
Cell Rep ; 16(8): 2208-2218, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27524624

RESUMO

A plethora of functional and genetic studies have suggested a key role for the IL-23 pathway in chronic intestinal inflammation. Currently, pathogenic actions of IL-23 have been ascribed to specific effects on immune cells. Herein, we unveil a protective role of IL-23R signaling. Mice deficient in IL-23R expression in intestinal epithelial cells (Il23R(ΔIEC)) have reduced Reg3b expression, show a disturbed colonic microflora with an expansion of flagellated bacteria, and succumb to DSS colitis. Surprisingly, Il23R(ΔIEC) mice show impaired mucosal IL-22 induction in response to IL-23. αThy-1 treatment significantly deteriorates colitis in Il23R(ΔIEC) animals, which can be rescued by IL-22 application. Importantly, exogenous Reg3b administration rescues DSS-treated Il23R(ΔIEC) mice by recruiting neutrophils as IL-22-producing cells, thereby restoring mucosal IL-22 levels. The study identifies a critical barrier-protective immune pathway that originates from, and is orchestrated by, IL-23R signaling in intestinal epithelial cells.


Assuntos
Colite/imunologia , Disbiose/imunologia , Interleucinas/imunologia , Mucosa Intestinal/imunologia , Receptores de Interleucina/imunologia , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/microbiologia , Sulfato de Dextrana , Disbiose/tratamento farmacológico , Disbiose/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Regulação da Expressão Gênica , Granulócitos/efeitos dos fármacos , Granulócitos/imunologia , Granulócitos/microbiologia , Interleucina-23/farmacologia , Interleucinas/genética , Interleucinas/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Isoanticorpos/farmacologia , Masculino , Camundongos , Camundongos Knockout , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Neutrófilos/microbiologia , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/imunologia , Proteínas Associadas a Pancreatite/farmacologia , Receptores de Interleucina/deficiência , Receptores de Interleucina/genética , Transdução de Sinais , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/microbiologia , Interleucina 22
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA