Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Chem Biol ; 19(3): 301-310, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36302897

RESUMO

Velcrin compounds kill cancer cells expressing high levels of phosphodiesterase 3A (PDE3A) and Schlafen family member 12 (SLFN12) by inducing complex formation between these two proteins, but the mechanism of cancer cell killing by the PDE3A-SLFN12 complex is not fully understood. Here, we report that the physiological substrate of SLFN12 RNase is tRNALeu(TAA). SLFN12 selectively digests tRNALeu(TAA), and velcrin treatment promotes the cleavage of tRNALeu(TAA) by inducing PDE3A-SLFN12 complex formation in vitro. We found that distinct sequences in the variable loop and acceptor stem of tRNALeu(TAA) are required for substrate digestion. Velcrin treatment of sensitive cells results in downregulation of tRNALeu(TAA), ribosome pausing at Leu-TTA codons and global inhibition of protein synthesis. Velcrin-induced cleavage of tRNALeu(TAA) by SLFN12 and the concomitant global inhibition of protein synthesis thus define a new mechanism of apoptosis initiation.


Assuntos
Neoplasias , RNA de Transferência de Leucina , Linhagem Celular Tumoral , Morte Celular , Apoptose , Biossíntese de Proteínas
2.
Angew Chem Int Ed Engl ; 61(28): e202200983, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486370

RESUMO

Understanding how mutations render a drug ineffective is a problem of immense relevance. Often the mechanism through which mutations cause drug resistance can be explained purely through thermodynamics. However, the more perplexing situation is when two proteins have the same drug binding affinities but different residence times. In this work, we demonstrate how all-atom molecular dynamics simulations using recent developments grounded in statistical mechanics can provide a detailed mechanistic rationale for such variances. We discover dissociation mechanisms for the anti-cancer drug Imatinib (Gleevec) against wild-type and the N368S mutant of Abl kinase. We show how this point mutation triggers far-reaching changes in the protein's flexibility and leads to a different, much faster, drug dissociation pathway. We believe that this work marks an efficient and scalable approach to obtain mechanistic insight into resistance mutations in biomolecular receptors that are hard to explain using a structural perspective.


Assuntos
Benzamidas , Piperazinas , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/metabolismo , Mesilato de Imatinib/farmacologia , Mutação , Piperazinas/química , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/química
3.
Sci Adv ; 6(41)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33028525

RESUMO

Rotary vacuolar adenosine triphosphatases (V-ATPases) drive transmembrane proton transport through a Vo proton channel subcomplex. Despite recent high-resolution structures of several rotary ATPases, the dynamic mechanism of proton pumping remains elusive. Here, we determined a 2.7-Å cryo-electron microscopy (cryo-EM) structure of yeast Vo proton channel in nanodisc that reveals the location of ordered water molecules along the proton path, details of specific protein-lipid interactions, and the architecture of the membrane scaffold protein. Moreover, we uncover a state of Vo that shows the c-ring rotated by ~14°. Molecular dynamics simulations demonstrate that the two rotary states are in thermal equilibrium and depict how the protonation state of essential glutamic acid residues couples water-mediated proton transfer with c-ring rotation. Our cryo-EM models and simulations also rationalize a mechanism for inhibition of passive proton transport as observed for free Vo that is generated as a result of V-ATPase regulation by reversible disassembly in vivo.

4.
Biochemistry ; 58(10): 1411-1422, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30785734

RESUMO

The role of Phe213 in the allosteric mechanism of human cytochrome P450 CYP3A4 was studied using a combination of progesterone (PGS) and carbamazepine (CBZ) as probe substrates. We expressed, purified, and incorporated into POPC Nanodiscs three mutants, F213A, F213S, and F213Y, and compared them with wild-type (WT) CYP3A4 by monitoring spectral titration, the rate of NADPH oxidation, and steady-state product turnover rates with pure substrates and substrate mixtures. All mutants demonstrated higher activity with CBZ, lower activity with PGS, and a reduced level of activation of CBZ epoxidation by PGS, which was most pronounced in the F213A mutant. Using all-atom molecular dynamics simulations, we compared the dynamics of WT CYP3A4 and the F213A mutant incorporated into the lipid bilayer and the effect of the presence of the PGS molecule at the allosteric peripheral site and evaluated the critical role of Phe213 in mediating the heterotropic allosteric interactions in CYP3A4.


Assuntos
Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Fenilalanina/metabolismo , Sítio Alostérico , Carbamazepina/química , Citocromo P-450 CYP3A/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/fisiologia , Humanos , Hidroxilação , Cinética , Simulação de Dinâmica Molecular , Oxirredução , Fenilalanina/fisiologia , Progesterona/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA