Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(4): e0181623, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38385650

RESUMO

Human adenovirus (HAdV) infects the respiratory system, thus posing a threat to health. However, immunodiagnostic reagents for human adenovirus are limited. This study aimed to develop efficient diagnostic reagents based on monoclonal antibodies for diagnosing various human adenovirus infections. Evolutionary and homology analyses of various human adenoviral antigen genes revealed highly conserved antigenic fragments. The prokaryotic expression system was applied to recombinant penton, hexon, and IVa2 conserved fragments of adenovirus, which were injected into BALB/c mice to prepare human adenovirus-specific monoclonal antibodies. Enzyme-linked immunosorbent assay (ELISA), indirect immunofluorescence assay (IFA), and Western blotting were used to determine the immune specificity of the monoclonal antibodies. Indirect ELISA showed that monoclonal antibodies 1F10, 8D3, 4A1, and 9B2 were specifically bound to HAdV-3 and HAdV-55 and revealed high sensitivity and low detection limits for various human adenoviruses. Western blotting showed that 1F10 and 8D3 specifically recognized various human adenovirus types, including HAdV-1, HAdV-2, HAdV-3, HAdV-4, HAdV-5, HAdV-7, HAdV-21, and HAdV-55, and 4A1 specifically recognized HAdV-1, HAdV-2, HAdV-3, HAdV-5, HAdV-7, HAdV-21, and HAdV-55. IFAs showed that 1F10, 8D3, and 4A1 exhibited highly selective localization to A549 cells infected with HAdV-3 and HAdV-55. Finally, two antibody pairs that could detect hexon antigens HAdV-3 and HAdV-55 at low concentrations were developed. The monoclonal antibodies developed in this study show potential for detecting human adenoviruses. IMPORTANCE: In this study, we selected the three most conserved antigenic fragments of human adenovirus to prepare a murine monoclonal antibody for the first time, and human adenovirus antigenic fragments with heretofore unheard of degrees of conservatism were isolated. The three monoclonal antibodies with the ability to recognize human respiratory adenovirus over a broad spectrum were screened by hybridoma and monoclonal antibody preparation. Human adenovirus infections are serious; however, therapeutic drugs and diagnostic reagents are scarce. Thus, to reduce the serious consequences of human viral infections and adenovirus pneumonitis, early diagnosis of infection is required. The present study provides three monoclonal antibodies capable of recognizing a wide range of human adenoviruses, thereby offering guidance for subsequent research and development.


Assuntos
Infecções por Adenovirus Humanos , Adenovírus Humanos , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Anticorpos Antivirais , Adenovírus Humanos/genética , Sorogrupo , Proteínas do Capsídeo/genética
2.
Adv Mater ; 36(9): e2305378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37931029

RESUMO

The recent prevalence of monkeypox has led to the declaration of a Public Health Emergency of International Concern. Monkeypox lesions are typically ulcers or pustules (containing high titers of replication-competent virus) in the skin and mucous membranes, which allow monkeypox virus to transmit predominantly through intimate contact. Currently, effective clinical treatments for monkeypox are lacking, and strategies for blocking virus transmission are fraught with drawbacks. Herein, this work constructs a biomimetic nanotemplate (termed TBD@M NPs) with macrophage membranes as the coat and polymeric nanoparticles loading a versatile aggregation-induced emission featured photothermal molecule TPE-BT-DPTQ as the core. In a surrogate mouse model of monkeypox (vaccinia-virus-infected tail scarification model), intravenously injected TBD@M NPs show precise tracking and near-infrared region II fluorescence imaging of the lesions. Upon 808 nm laser irradiation, the virus is eliminated by the photothermal effect and the infected wound heals rapidly. More importantly, the inoculation of treated lesion tissue suspensions does not trigger tail infection or inflammatory activation in healthy mice, indicating successful blockage of virus transmission. This study demonstrates for the first time monkeypox theranostics using nanomedicine, and may bring a new insight into the development of a viable strategy for monkeypox management in clinical trials.


Assuntos
Mpox , Nanopartículas , Animais , Camundongos , Terapia Fototérmica , Biomimética , Macrófagos , Nanopartículas/uso terapêutico
3.
Nat Commun ; 14(1): 8241, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086870

RESUMO

The first local mpox outbreak in Guangdong Province, China occurred in June 2023. However, epidemiological data have failed to quickly identify the source and transmission of the outbreak. Here, phylogeny and molecular evolution of 10 monkeypox virus (MPXV) genome sequences from the Guangdong outbreak were characterized, revealing local silent transmissions that may have occurred in Guangdong whose mpox outbreaks suggested a molecular epidemiological correlation with Portugal and several regions of China during the same period. The lineage IIb C.1, which includes all 10 MPXV from Guangdong, shows consistent temporal continuity in both phylogenetic characteristics and unique molecular evolutionary mutation spectrum, reflected in the continuous increase of single nucleotide polymorphisms (SNPs) and shared mutations over time. Compared with the Japan MPXV, the Guangdong MPXV showed higher genomic nucleotide differences and separated 14 shared mutations from the B.1 lineage, comprising 6 non-synonymous mutations in genes linked to host regulation, virus infection, and virus life cycle. The unique mutation spectrum with temporal continuity in IIb C.1, related to apolipoprotein B mRNA-editing catalytic polypeptide-like 3, promotes rapid viral evolution and diversification. The findings contribute to understanding the ongoing mpox outbreak in China and offer insights for developing joint prevention and control strategies.


Assuntos
Monkeypox virus , Mpox , Humanos , Filogenia , Monkeypox virus/genética , Surtos de Doenças , Evolução Molecular
4.
Biochim Biophys Acta Mol Basis Dis ; 1868(10): 166472, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35752384

RESUMO

During the epidemic, the individuals with underlying diseases usually have a higher rate of mortality. Diabetes is highly prevalent worldwide, making it a frequent comorbidity in dengue fever patients. Therefore, understanding the relationship between dengue virus (DENV) infection and diabetes is important. We first demonstrated that DENV-3 infection down-regulated the expression of IRS-1. In vitro, treatment of HepG2 cells with TNF-α inhibitors and siRNA proved that after DENV-3 infection in HepG2 cells, cellular TNF-α secretion was increased, which negatively regulated IRS-1, thereby leading to an insulin-resistant state. In vivo, DENV-3 induced insulin resistance (IR) in hepatocytes by promoting the secretion of TNF-α and inhibiting the expression of IRS-1 was proved. In vivo approaches also showed that after DENV-3 infection, TNF-α levels in the serum of C57BL/6 mice with insulin resistance increased, and upon TNF-α antagonist III treatment, IRS-1 expression in the liver, reduced by infection, was upregulated. In addition, transcriptomic analysis revealed more negative regulatory events in the insulin receptor signaling pathway after DENV-3 infection. This is the first report of a link between DENV-3 infection and insulin resistance, and it lays a foundation for further research.


Assuntos
Vírus da Dengue , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Animais , Vírus da Dengue/metabolismo , Regulação para Baixo , Resistência à Insulina/genética , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA