Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(17): 6618-6627, 2024 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-38626343

RESUMO

Tumor-derived extracellular vesicles (EVs) carry tumor-specific proteins and RNAs, thus becoming prevalent targets for early cancer diagnosis. However, low expression of EV cargos and insufficient diagnostic power of individual biomarkers hindered EVs application in clinical practice. Herein, we propose a multiplex Codetection platform of proteins and RNAs (Co-PAR) for EVs. Co-PAR adopted a pair of antibody-DNA probes to recognize the same target protein, which in turn formed a double-stranded DNA. Thus, the target protein could be quantified by detecting the double-stranded DNA via qPCR. Meanwhile, qRT-PCR simultaneously quantified the target RNAs. Thus, with a regular qPCR instrument, Co-PAR enabled the codetection of multiplex proteins and RNAs, with the sensitivity of 102 EVs/µL (targeting CD63) and 1 EV/µL (targeting snRNA U6). We analyzed the coexpressions of three protein markers (CD63, GPC-1, HER2) and three RNA markers (snRNA U6, GPC-1 mRNA, miR-10b) on EVs from three pancreatic cell lines and 30 human plasma samples using Co-PAR. The diagnostic accuracy of the 6-biomarker combination reached 92.9%, which was at least 6.2% higher than that of 3-biomarker combinations and at least 13.5% higher than that of 6 single biomarkers. Co-PAR, as a multiparameter detection platform for EVs, has great potential in early disease diagnosis.


Assuntos
Biomarcadores Tumorais , Detecção Precoce de Câncer , Vesículas Extracelulares , Neoplasias Pancreáticas , Humanos , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/análise , RNA/análise , Linhagem Celular Tumoral
2.
J Extracell Vesicles ; 12(9): e12364, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37654045

RESUMO

Extracellular vesicle (EV) surface proteins, expressed by primary tumours, are important biomarkers for early cancer diagnosis. However, the detection of these EV proteins is complicated by their low abundance and interference from non-EV components in clinical samples. Herein, we present a MEmbrane-Specific Separation and two-step Cascade AmpLificatioN (MESS2CAN) strategy for direct detection of EV surface proteins within 4 h. MESS2CAN utilises novel lipid probes (long chains linked by PEG2K with biotin at one end, and DSPE at the other end) and streptavidin-coated magnetic beads, permitting a 49.6% EV recovery rate within 1 h. A dual amplification strategy with a primer exchange reaction (PER) cascaded by the Cas12a system then allows sensitive detection of the target protein at 10 EV particles per microliter. Using 4 cell lines and 90 clinical test samples, we demonstrate MESS2CAN for analysing HER2, EpCAM and EGFR expression on EVs derived from cells and patient plasma. MESS2CAN reports the desired specificity and sensitivity of EGFR (AUC = 0.98) and of HER2 (AUC = 1) for discriminating between HER2-positive breast cancer, triple-negative breast cancer and healthy donors. MESS2CAN is a pioneering method for highly sensitive in vitro EV diagnostics, applicable to clinical samples with trace amounts of EVs.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Proteínas de Membrana , Biotina , Neoplasias da Mama/diagnóstico , Receptores ErbB
3.
Cytometry A ; 101(8): 617-629, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35301803

RESUMO

Co-detection of multiplex cancer subtypes and bacteria subtypes in situ is crucial for understanding tumor microbiome interactions in tumor microenvironment. Current standard techniques such as immunohistochemical staining and immunofluorescence staining are limited for their multiplicity. Simultaneously visualizing detailed cell subtypes and bacteria distribution across the same pathological section remains a major technical challenge. Herein, we developed a rapid semi-quantitative method for in situ imaging of bacteria and multiplex cell phenotypes on the same solid tumor tissue sections. We designed a panel of antibody probes labeled with mass tags, namely prokaryotic and eukaryotic cell hybrid probes for in situ imaging (PEHPSI). For application demonstration, PEHPSI stained two bacteria subtypes (lipopolysaccharides (LPS) for Gram-negative bacteria and lipoteichoic acid (LTA) for Gram-positive bacteria) simultaneously with four types of immune cells (leukocytes, CD8 + T-cells, B-cells and macrophages) and four breast cancer subtypes (classified by a panel of 12 human proteins) on the same tissue section. We unveiled that breast cancer cells are commonly enriched with Gram-negative bacteria and almost absent of Gram-positive bacteria, regardless of the cancer subtypes (triple-negative breast cancer [TNBC], HER2+, Luminal A and Luminal B). Further analysis revealed that on the single-cell level, Gram-negative bacteria have a significant correlation with CD8 + T-cells only in HER2+ breast cancer, while PKCD, ER, PR and Ki67 are correlated with Gram-negative bacteria in the other three subtypes of breast cancers. On the cell population level, in TNBC, CD19 expression intensity is up-regulated by approximately 25% in bacteria-enriched cells, while for HER2+, Luminal A and Luminal B breast cancers, the intensity of biomarkers associated with the malignancy, metastasis and proliferation of cancer cells (PKCD, ISG15 and IFI6) is down-regulated by 29%-38%. The flexible and expandable PEHPSI system permits intuitive multiplex co-visualization of bacteria and mammalian cells, which facilitates future research on tumor microbiome and tumor pathogenesis.


Assuntos
Neoplasias da Mama , Microbiota , Neoplasias de Mama Triplo Negativas , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Feminino , Humanos , Citometria por Imagem , Receptor ErbB-2/genética , Receptores de Estrogênio , Receptores de Progesterona , Neoplasias de Mama Triplo Negativas/metabolismo , Microambiente Tumoral
4.
J Nanobiotechnology ; 19(1): 445, 2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-34949196

RESUMO

Phosphomolybdate-based nanoparticles (PMo12-based NPs) have been commonly applied in nanomedicine. However, upon contact with biofluids, proteins are quickly adsorbed onto the NPs surface to form a protein corona, which induces the opsonization and facilitates the rapid clearance of the NPs by macrophage uptake. Herein, we introduce a family of structurally homologous PMo12-based NPs (CDS-PMo12@PVPx(x = 0 ~ 1) NPs) capping diverse content of zwitterionic polymer poly (N-vinylpyrrolidone) (PVP) to regulate the protein corona formation on PMo12-based NPs. The fluorescence quenching data indicate that the introduction of PVP effectively reduces the number of binding sites of proteins on PMo12-based NPs. Molecular docking simulations results show that the contact surface area and binding energy of proteins to CDS-PMo12@PVP1 NPs are smaller than the CDS-PMo12@PVP0 NPs. The liquid chromatography-tandem mass spectrometry (LC-MS/MS) is further applied to analyze and quantify the compositions of the human plasma corona formation on CDS-PMo12@PVPx(x = 0 ~ 1) NPs. The number of plasma protein groups adsorption on CDS-PMo12@PVP1 NPs, compared to CDS-PMo12@PVP0 NPs, decreases from 372 to 271. In addition, 76 differentially adsorption proteins are identified between CDS-PMo12@PVP0 and CDS-PMo12@PVP1 NPs, in which apolipoprotein is up-regulated in CDS-PMo12@PVP1 NPs. The apolipoprotein adsorption onto the NPs is proposed to have dysoponic activity and enhance the circulation time of NPs. Our findings demonstrate that PVP grafting on PMo12-based NPs is a promising strategy to improve the anti-biofouling property for PMo12-based nanodrug design.


Assuntos
Molibdênio/química , Nanopartículas/química , Ácidos Fosfóricos/química , Povidona/química , Coroa de Proteína/química , Adsorção , Apolipoproteínas/análise , Apolipoproteínas/química , Apolipoproteínas/metabolismo , Proteínas Sanguíneas/análise , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Cromatografia Líquida de Alta Pressão , Humanos , Simulação de Acoplamento Molecular , Propriedades de Superfície , Tensoativos/química , Espectrometria de Massas em Tandem
5.
Adv Sci (Weinh) ; 8(24): e2102812, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34719883

RESUMO

High-dimensional imaging mass cytometry (IMC) enables simultaneous quantification of over 35 biomarkers on one tissue section. However, its limited resolution and ultralow acquisition speed remain major issues for general clinical application. Meanwhile, conventional immunofluorescence microscopy (IFM) allows sub-micrometer resolution and rapid identification of the region of interest (ROI), but only operates with low multiplicity. Herein, a series of lanthanide-doped blue-, green-, and red-fluorescent carbon nanodots (namely, B-Cdots(Ln1 ), G-Cdots(Ln2 ), and R-Cdots(Ln3 )) as fluorescence and mass dual-modal tags are developed. Coupled with aptamers, B-Cdots(159 Tb)-A10-3.2, G-Cdots(165 Ho)-AS1411, and R-Cdots(169 Tm)-SYL3C dual-functional aptamer probes, which are then multiplexed with commercially available Maxpar metal-tagged antibodies for analyzing clinical formalin-fixed, paraffin-embedded (FFPE) prostatic adenocarcinoma (PaC) tissue, are further synthesized. The rapid identification of ROI with IFM using fluorescence signals and subsequent multiplexed detection of in situ ROI with IMC using the same tissue section is demonstrated. Dual-modal probes save up to 90% IMC blind scanning time for a standard 3.5 mm × 3.5 mm overall image. Meanwhile, the IFM provides refined details and topological spatial distributions for the functional proteins at optical resolution, which compensates for the low resolution of the IMC imaging.


Assuntos
Aptâmeros de Nucleotídeos/química , Carbono/química , Citometria por Imagem/instrumentação , Citometria por Imagem/métodos , Elementos da Série dos Lantanídeos/química , Microscopia de Fluorescência/instrumentação , Microscopia de Fluorescência/métodos , Desenho de Equipamento , Fluorescência , Humanos , Pontos Quânticos/química
6.
J Nanobiotechnology ; 19(1): 287, 2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565398

RESUMO

Pancreatic cancer, at unresectable advanced stages, presents poor prognoses, which could be prevented by early pancreatic cancer diagnosis methods. Recently, a promising early-stage pancreatic cancer biomarker, extracellular vesicles (EVs) related glypican-1 (GPC1) mRNA, is found to overexpress in pancreatic cancer cells. Current mRNA detection methods usually require expensive machinery, strict preservation environments, and time-consuming processes to guarantee detection sensitivity, specificity, and stability. Herein, we propose a novel two-step amplification method (CHAGE) via the target triggered Catalytic Hairpin Assembly strategy combined with Gold-Enhanced point-of-care-testing (POCT) technology for sensitive visual detection of pancreatic cancer biomarker. First, utilizing the catalyzed hairpin DNA circuit, low expression of the GPC1 mRNA was changed into amplification product 1 (AP1, a DNA duplex) as the next detection targets of the paper strips. Second, the AP1 was loaded onto a lateral flow assay and captured with the gold signal nanoparticles to visualize results. Finally, the detected results can be further enhanced by depositing gold to re-enlarge the sizes of gold nanoparticles in detection zones. As a result, the CHAGE methodology lowers the detection limit of mRNA to 100 fM and provides results within 2 h at 37 °C. Furthermore, we demonstrate the successful application in discriminating pancreatic cancer cells by analyzing EVs' GPC1 mRNA expression levels. Hence, the CHAGE methodology proposed here provides a rapid and convenient POCT platform for sensitive detection of mRNAs through unique probes designs (COVID, HPV, etc.).


Assuntos
Detecção Precoce de Câncer/métodos , Neoplasias Pancreáticas/diagnóstico , RNA Mensageiro/isolamento & purificação , Biomarcadores Tumorais/genética , COVID-19 , Vesículas Extracelulares , Glipicanas/genética , Ouro , Humanos , Nanopartículas Metálicas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas
7.
Adv Sci (Weinh) ; 8(8): 2002404, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33898168

RESUMO

Uveal melanoma (UM) is the most common intraocular malignant tumor in adults and has a low survival rate following metastasis; it is derived from melanocytes susceptible to reactive oxygen species (ROS). Carbon dot (Cdot) nanoparticles are a promising tool in cancer detection and therapy due to their unique photophysical properties, low cytotoxicity, and efficient ROS productivity. However, the effects of Cdots on tumor metabolism and growth are not well characterized. Here, the effects of Cdots on UM cell metabolomics, growth, invasiveness, and tumorigenicity are investigated in vitro and in vivo zebrafish and nude mouse xenograft model. Cdots dose-dependently increase ROS levels in UM cells. At Cdots concentrations below 100 µg mL-1, Cdot-induced ROS promote UM cell growth, invasiveness, and tumorigenicity; at 200 µg mL-1, UM cells undergo apoptosis. The addition of antioxidants reverses the protumorigenic effects of Cdots. Cdots at 25-100 µg mL-1 activate Akt/mammalian target of rapamycin (mTOR) signaling and enhance glutamine metabolism, generating a cascade that promotes UM cell growth. These results demonstrate that moderate, subapoptotic doses of Cdots can promote UM cell tumorigenicity. This study lays the foundation for the rational application of ROS-producing nanoparticles in tumor imaging and therapy.


Assuntos
Carbono/farmacologia , Glutamina/metabolismo , Melanoma/patologia , Espécies Reativas de Oxigênio/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Neoplasias Uveais/patologia , Animais , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glutamina/efeitos dos fármacos , Camundongos , Camundongos Nus , Nanopartículas , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/efeitos dos fármacos , Peixe-Zebra
8.
J Nanosci Nanotechnol ; 18(12): 8085-8093, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189923

RESUMO

Due to the dual role as an electron acceptor and an electron donor in solution, carbon dots (Cdots) have broad applications in environmental analysis, biological detection, and biosensors. Herein, we report a facile-green strategy for a large-scale synthesis of fluorescent N, P-doped carbon dots (N, P-Cdots) with an absolute quantum yield of 66.08% by a simple one-step thermal decomposition. Glucose was selected as a carbon precursor and tryptophan (Trp) as an N-doping and passivation reagent. Organic polar solvents with a high boiling point, i.e., ethylene glycol and glycerol, were used as the reaction medium, and phosphoric acid was employed as a P source and oxidation accelerator. It is shown that the emission wavelength of the N, P-Cdots can be tuned by adjusting the reaction conditions, such as mass ratio, heating time, temperature, and medium, without further passivation. Finally, advantage was taken of the superior fluorescent characteristics of N, P-Cdots to detect selectively and with high sensitivity a cancer marker, carcinoembryonic antigen (CEA), based on the fluorescent quenching mechanism. Additionally, CEA was also detected in human serum samples with high efficiency and RSD, further confirming that the proposed method has a good consistency and stability for supersensitive fluorimetric detection of cancer markers.


Assuntos
Técnicas Biossensoriais , Neoplasias , Pontos Quânticos , Carbono , Corantes Fluorescentes , Humanos , Neoplasias/diagnóstico
9.
Biomicrofluidics ; 12(2): 024109, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29576839

RESUMO

Portable Polymerase Chain Reaction (PCR) devices combined with microfluidic chips or lateral flow stripes have shown great potential in the field of point-of-need testing (PoNT) as they only require a small volume of patient sample and are capable of presenting results in a short time. However, the detection for multiple targets in this field leaves much to be desired. Herein, we introduce a novel PCR platform by integrating a bottom-well microfluidic chip with an infra-red (IR) excited temperature control method and fluorescence co-detection of three PCR products. Microfluidic chips are utilized to partition different samples into individual bottom-wells. The oil phase in the main channel contains multi-walled carbon nanotubes which were used as a heat transfer medium that absorbs energy from the IR-light-emitting diode (LED) and transfers heat to the water phase below. Cyclical rapid heating and cooling necessary for PCR are achieved by alternative power switching of the IR-LED and Universal Serial Bus (USB) mini-fan with a pulse width modulation scheme. This design of the IR-LED PCR platform is economic, compact, and fully portable, making it a promising application in the field of PoNT. The bottom-well microfluidic chip and IR-LED PCR platform were combined to fulfill a three-stage thermal cycling PCR for 40 cycles within 90 min for Human Papilloma Virus (HPV) detection. The PCR fluorescent signal was successfully captured at the end of each cycle. The technique introduced here has broad applications in nucleic acid amplification and PoNT devices.

10.
J Biomed Nanotechnol ; 14(1): 168-178, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463374

RESUMO

Exosomes are nano-vesicles that contribute to the effectiveness of many treatments. The aim of this study was to identify profiles of microRNA (miRNA) contained in serum exosomes that are differentially regulated in patients with prostate cancer undergoing carbon ion radiotherapy (CIRT). RNA was extracted from serum exosomes of eight patients with localized prostate cancer before and after CIRT, and miRNA was analyzed by the next generation sequencing. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the major signaling pathways associated with the proliferation of prostate cancer cells, such as MAPK, PI3K-AKT, mTOR, and AMPK may be implicated in the mechanism of CIRT action. Notably, 57 miRNAs present in serum exosomes were significantly altered after application of CIRT. A high pre-CIRT expression level of specific miRNAs (miR-493-5p, miR-323a-3p, miR-411-5p, miR-494-3p, miR-379-5p, miR-654-3p, miR-409-3p, miR-543, and miR-200c-3p) predicted therapeutic benefit of CIRT (P < 0.05). Post-CIRT expression of miR-654-3p and miR-379-5p was also associated with CIRT efficacy (P < 0.05). These results suggest that the anti-prostate cancer mechanisms elicited by CIRT at the molecular level may involve exosomal miRNAs. Furthermore, specific miRNAs in serum exosomes, particularly miR-654-3p and miR-379-5p, may serve as promising non-invasive biomarkers predicting efficacy of CIRT for prostate cancer.


Assuntos
Exossomos , Radioterapia com Íons Pesados , MicroRNAs/uso terapêutico , Neoplasias da Próstata/radioterapia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética
11.
J Biomed Nanotechnol ; 11(1): 117-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26301305

RESUMO

In this study, using chemically reduced graphene oxide (GO) as a model nanocarbon, we successfully developed a facile surface-functionalization strategy of nanocarbons to allow both biocompatibility and receptor targeted drug delivery. Polyvinylpyrrolidone (PVP) coating improves aqueous dispersibility and biocompatibility of GO, and provides anchoring sites for ACDCRGDCFCG peptide (RGD4C). Aromatic photosensitizer chlorin e6 (Ce6) can be effectively loaded into the rGO-PVP-RGD system via hydrophobic interactions and π-π stacking. The nanodelivery system can significantly increase the accumulation of Ce6 in tumor cells and lead to an improved photodynamic therapy (PDT) efficacy as compared to Ce6 alone. The facile surface functionalization strategy can be applied to other nanomaterials such as carbon nanotubes, and inorganic nanomaterials.


Assuntos
Grafite/química , Nanocápsulas/química , Fotoquimioterapia/métodos , Porfirinas/administração & dosagem , Neoplasias Gástricas/tratamento farmacológico , Linhagem Celular Tumoral , Clorofilídeos , Difusão , Humanos , Nanocápsulas/administração & dosagem , Nanocápsulas/ultraestrutura , Oxirredução , Óxidos/química , Tamanho da Partícula , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacocinética , Porfirinas/farmacocinética , Povidona/química , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Resultado do Tratamento
12.
J Nanobiotechnology ; 12: 58, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25547381

RESUMO

BACKGROUND: Fluorescent carbon dots (Cdots) have attracted increasing attention due to their potential applications in sensing, catalysis, and biomedicine. Currently, intensive research has been concentrated on the synthesis and imaging-guided therapy of these benign photoluminescent materials. Meanwhile, Cdots have been explored as nonviral vector for nucleic acid or drug delivery by chemical modification on purpose. RESULTS: We have developed a microwave assisted one-step synthesis of Cdots with citric acid as carbon source and tryptophan (Trp) as both nitrogen source and passivation agent. The Cdots with uniform size show superior water solubility, excellent biocompatibility, and high quantum yield. Afterwards, the PEI (polyethylenimine)-adsorbed Cdots nanoparticles (Cdots@PEI) were applied to deliver Survivin siRNA into human gastric cancer cell line MGC-803. The results have confirmed the nanocarrier exhibited excellent biocompatibility and a significant increase in cellular delivery of siRNA, inducing efficient knockdown for Survivin protein to 6.1%. In addition, PEI@Cdots complexes mediated Survivin silencing, the arrested cell cycle progression in G1 phase as well as cell apoptosis was observed. CONCLUSION: The Cdots-based and PEI-adsorbed complexes both as imaging agents and siRNA nanocarriers have been developed for Survivin siRNA delivery. And the results indicate that Cdots-based nanocarriers could be utilized in a broad range of siRNA delivery systems for cancer therapy.


Assuntos
Carbono/química , Corantes Fluorescentes/administração & dosagem , Técnicas de Transferência de Genes , Pontos Quânticos/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Neoplasias Gástricas/genética , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Corantes Fluorescentes/química , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Proteínas Inibidoras de Apoptose/genética , Nanopartículas/química , Polietilenoimina/química , Pontos Quânticos/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacocinética , Solubilidade , Neoplasias Gástricas/terapia , Survivina
13.
Nanoscale Res Lett ; 9(1): 397, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25177217

RESUMO

Carbon dots exhibit great potential in applications such as molecular imaging and in vivo molecular tracking. However, how to enhance fluorescence intensity of carbon dots has become a great challenge. Herein, we report for the first time a new strategy to synthesize fluorescent carbon dots (C-dots) with high quantum yields by using ribonuclease A (RNase A) as a biomolecular templating agent under microwave irradiation. The synthesized RNase A-conjugated carbon dots (RNase A@C-dots) exhibited quantum yields of 24.20%. The fluorescent color of the RNase A@C-dots can easily be adjusted by varying the microwave reaction time and microwave power. Moreover, the emission wavelength and intensity of RNase A@C-dots displayed a marked excitation wavelength-dependent character. As the excitation wavelength alters from 300 to 500 nm, the photoluminescence (PL) peak exhibits gradually redshifts from 450 to 550 nm, and the intensity reaches its maximum at an excitation wavelength of 380 nm. Its Stokes shift is about 80 nm. Notably, the PL intensity is gradually decreasing as the pH increases, almost linearly dependent, and it reaches the maximum at a pH = 2 condition; the emission peaks also show clearly a redshift, which may be caused by the high activity and perfective dispersion of RNase A in a lower pH solution. In high pH solution, RNase A tends to form RNase A warped carbon dot nanoclusters. Cell imaging confirmed that the RNase A@C-dots could enter into the cytoplasm through cell endocytosis. 3D confocal imaging and transmission electron microscopy observation confirmed partial RNase A@C-dots located inside the nucleus. MTT and real-time cell electronic sensing (RT-CES) analysis showed that the RNase A@C-dots could effectively inhibit the growth of MGC-803 cells. Intra-tumor injection test of RNase A@C-dots showed that RNase A@C-dots could be used for imaging in vivo gastric cancer cells. In conclusion, the as-prepared RNase A@C-dots are suitable for simultaneous therapy and in vivo fluorescence imaging of nude mice loaded with gastric cancer or other tumors.

14.
Nanoscale Res Lett ; 8(1): 478, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24229351

RESUMO

A series of non-precious metal electrocatalysts, namely pyrolyzed carbon-supported cobalt-polypyrrole, Co-PPy-TsOH/C, are synthesized with various cobalt precursors, including cobalt acetate, cobalt nitrate, cobalt oxalate, and cobalt chloride. The catalytic performance towards oxygen reduction reaction (ORR) is comparatively investigated with electrochemical techniques of cyclic voltammogram, rotating disk electrode and rotating ring-disk electrode. The results are analyzed and discussed employing physiochemical techniques of X-ray diffraction, transmission electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, inductively coupled plasma, elemental analysis, and extended X-ray absorption fine structure. It shows that the cobalt precursor plays an essential role on the synthesis process as well as microstructure and performance of the Co-PPy-TsOH/C catalysts towards ORR. Among the studied Co-PPy-TsOH/C catalysts, that prepared with cobalt acetate exhibits the best ORR performance. The crystallite/particle size of cobalt and its distribution as well as the graphitization degree of carbon in the catalyst greatly affects the catalytic performance of Co-PPy-TsOH/C towards ORR. Metallic cobalt is the main component in the active site in Co-PPy-TsOH/C for catalyzing ORR, but some other elements such as nitrogen are probably involved, too.

15.
Biomaterials ; 34(21): 5254-61, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23566800

RESUMO

Graphene oxide (GO) immunotoxicity is not clarified well up to date. Herein we reported the effects of GOs with and without polyvinylpyrrolidone (PVP) coating on human immune cells such as dendritic cells (DCs), T lymphocytes and macrophages. Human immune cells such as dendritic cells (DCs), T lymphocytes and macrophages were isolated from health donated bloods, PVP-coating GO (PVP-GO) exhibited lower immunogenicity compared with pure GO on the aspect of inducing differentiation and maturation of dendritic cells (DCs), the levels of secreted TNF-α and IL-1ß had no obvious difference between two groups, yet the secretion of IL-6 remained in PVP-coating GO group. In addition, PVP-coating GO delayed significantly the apoptotic process of T lymphocytes, at the same time, and exhibited anti-phagocytosis ability against macrophages and markedly enhanced the physiological activity of macrophages. In conclusion, PVP-coating GO possesses good immunological biocompatibility and immunoenhancement effects in vitro, and is likely to be an available candidate of immunoadjuvant in the future.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Grafite/química , Grafite/toxicidade , Imunotoxinas/toxicidade , Óxidos/química , Povidona/farmacologia , Apoptose/efeitos dos fármacos , Citocinas/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Humanos , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microscopia de Força Atômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Modelos Biológicos , Fenótipo , Linfócitos T/citologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
16.
Nanoscale Res Lett ; 8(1): 122, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23497260

RESUMO

Photoluminescent carbon dots (C-dots) were prepared using the improved nitric acid oxidation method. The C-dots were characterized by tapping-mode atomic force microscopy, and UV-vis absorption spectroscopy. The C-dots were subjected to systematic safety evaluation via acute toxicity, subacute toxicity, and genotoxicity experiments (including mouse bone marrow micronuclear test and Salmonella typhimurium mutagenicity test). The results showed that the C-dots were successfully prepared with good stability, high dispersibility, and water solubility. At all studied C-dot dosages, no significant toxic effect, i.e., no abnormality or lesion, was observed in the organs of the animals. Therefore, the C-dots are non-toxic to mice under any dose and have potential use in fluorescence imaging in vivo, tumor cell tracking, and others.

18.
Opt Express ; 19(18): 17030-9, 2011 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-21935063

RESUMO

Indocyanine green-loaded mesoporous silica-coated gold nanorods (ICG-loaded Au@SiO2) were prepared for the dual capability of X-ray computed tomography (CT) and fluorescence imaging. X-ray CT scanning showed that ICG-loaded Au@SiO2 could provide significant contrast enhancement; Near-infrared fluorescence generated by the nanomaterial was present up to 12 h post intratumoral injection, thus enabling ICG-loaded Au@SiO2 to be used as a promising dual mode imaging contrast agent. Multiplexed images can be more easily obtained with this novel type of multimodal nanostructure compared with traditional contrast agents. The dual mode imaging probe has great potential for use in applications such as cancer targeting, molecular imaging in combination with radiotherapy, and photothermolysis.


Assuntos
Meios de Contraste , Verde de Indocianina , Nanopartículas Metálicas , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Feminino , Fluorescência , Corantes Fluorescentes , Ouro , Camundongos , Camundongos Nus , Nanocompostos , Nanotubos , Dióxido de Silício , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA