Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Immun Ageing ; 21(1): 29, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730291

RESUMO

BACKGROUND: Quercetin is a flavonol compound widely distributed in plants that possesses diverse biological properties, including antioxidative, anti-inflammatory, anticancer, neuroprotective and senescent cell-clearing activities. It has been shown to effectively alleviate neurodegenerative diseases and enhance cognitive functions in various models. The immune system has been implicated in the regulation of brain function and cognitive abilities. However, it remains unclear whether quercetin enhances cognitive functions by interacting with the immune system. RESULTS: In this study, middle-aged female mice were administered quercetin via tail vein injection. Quercetin increased the proportion of NK cells, without affecting T or B cells, and improved cognitive performance. Depletion of NK cells significantly reduces cognitive ability in mice. RNA-seq analysis revealed that quercetin modulated the RNA profile of hippocampal tissues in aging animals towards a more youthful state. In vitro, quercetin significantly inhibited the differentiation of Lin-CD117+ hematopoietic stem cells into NK cells. Furthermore, quercetin promoted the proportion and maturation of NK cells by binding to the MYH9 protein. CONCLUSIONS: In summary, our findings suggest that quercetin promotes the proportion and maturation of NK cells by binding to the MYH9 protein, thereby improving cognitive performance in middle-aged mice.

2.
Cancer Sci ; 115(5): 1388-1404, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38480275

RESUMO

Glioblastoma (GBM) is the most common malignant diffuse glioma of the brain. Although immunotherapy with immune checkpoint inhibitors (ICIs), such as programmed cell death protein (PD)-1/PD ligand-1 inhibitors, has revolutionized the treatment of several cancers, the clinical benefit in GBM patients has been limited. Lymphocyte-activation gene 3 (LAG-3) binding to human leukocyte antigen-II (HLA-II) plays an essential role in triggering CD4+ T cell exhaustion and could interfere with the efficiency of anti-PD-1 treatment; however, the value of LAG-3-HLA-II interactions in ICI immunotherapy for GBM patients has not yet been analyzed. Therefore, we aimed to investigate the expression and regulation of HLA-II in human GBM samples and the correlation with LAG-3+CD4+ T cell infiltration. Human leukocyte antigen-II was highly expressed in GBM and correlated with increased LAG-3+CD4+ T cell infiltration in the stroma. Additionally, HLA-IIHighLAG-3High was associated with worse patient survival. Increased interleukin-10 (IL-10) expression was observed in GBM, which was correlated with high levels of HLA-II and LAG-3+ T cell infiltration in stroma. HLA-IIHighIL-10High GBM associated with LAG-3+ T cells infiltration synergistically showed shorter overall survival in patients. Combined anti-LAG-3 and anti-IL-10 treatment inhibited tumor growth in a mouse brain GL261 tumor model. In vitro, CD68+ macrophages upregulated HLA-II expression in GBM cells through tumor necrosis factor-α (TNF-α). Blocking TNF-α-dependent inflammation inhibited tumor growth in a mouse GBM model. In summary, T cell-tumor cell interactions, such as LAG-3-HLA-II, could confer an immunosuppressive environment in human GBM, leading to poor prognosis in patients. Therefore, targeting the LAG-3-HLA-II interaction could be beneficial in ICI immunotherapy to improve the clinical outcome of GBM patients.


Assuntos
Antígenos CD , Neoplasias Encefálicas , Linfócitos T CD4-Positivos , Glioblastoma , Proteína do Gene 3 de Ativação de Linfócitos , Regulação para Cima , Glioblastoma/imunologia , Glioblastoma/patologia , Glioblastoma/metabolismo , Humanos , Animais , Camundongos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Antígenos CD/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe II/metabolismo , Antígenos de Histocompatibilidade Classe II/imunologia , Interleucina-10/metabolismo , Microambiente Tumoral/imunologia , Pessoa de Meia-Idade
3.
CNS Neurosci Ther ; 30(3): e14679, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38528842

RESUMO

AIMS: Intracerebral hemorrhage (ICH) is a disease with high rates of disability and mortality. The role of epidermal growth factor receptor 1 (ERBB1) in ICH was elucidated in this study. METHODS: ICH model was constructed by injecting autologous arterial blood into the right basal ganglia. The protein level of ERBB1 was detected by western blot analysis. To up- and downregulation of ERBB1 in rats, intraventricular injection of a lentivirus overexpression vector of ERBB1 and AG1478 (a specific inhibitor of ERBB1) was used. The cell apoptosis, neuronal loss, and pro-inflammatory cytokines were assessed by TUNEL, Nissl staining, and ELISA. Meanwhile, behavioral cognitive impairment of ICH rats was evaluated after ERBB1-targeted interventions. RESULTS: ERBB1 increased significantly in brain tissue of ICH rats. Overexpression of ERBB1 remarkably reduced cell apoptosis and neuronal loss induced by ICH, as well as pro-inflammatory cytokines and oxidative stress. Meanwhile, the behavioral and cognitive impairment of ICH rats were alleviated after upregulation of ERBB1; however, the secondary brain injury (SBI) was aggravated by AG1478 treatment. Furthermore, the upregulation of PLC-γ and PKC in ICH rats was reversed by AG1478 treatment. CONCLUSIONS: ERBB1 can improve SBI and has a neuroprotective effect in experimental ICH rats via PLC-γ/PKC pathway.


Assuntos
Lesões Encefálicas , Hemorragia Cerebral , Receptores ErbB , Quinazolinas , Animais , Ratos , Apoptose , Lesões Encefálicas/metabolismo , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Citocinas/metabolismo , Fosfolipase C gama/metabolismo , Ratos Sprague-Dawley , Tirfostinas , Receptores ErbB/metabolismo , Proteína Quinase C/metabolismo
4.
Ecotoxicol Environ Saf ; 270: 115868, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38142590

RESUMO

Ochratoxin A (OTA) is a mycotoxin commonly found in several food commodities worldwide with potential nephrotoxic, hepatotoxic and carcinogenic effects. We previously showed for the first time that OTA treatment enhanced glycolysis in human gastric epithelium (GES-1) cells in vitro. Here, we found that OTA exposure activated inflammatory responses, evidenced by increasing of NF-κB signaling pathway-related protein (p-p65 and p-IκBα) expressions and elevating of inflammatory cytokine (IL-1ß and IL-6) mRNA expressions in GES-1 cells. To elucidate the role of glycolysis in inflammatory effects triggered by OTA, we pretreated GES-1 cells with glycolysis inhibitor (2-deoxy-D-glucose, 2-DG) before OTA exposure. The result showed that 2-DG reduced the protein expressions of p-p65 and p-IκBα and alleviated the mRNA expressions of inflammatory cytokines in OTA-treated GES-1 cells. Furthermore, OTA activated the mTOR/HIF-1α pathway by increasing the protein expressions of p-mTOR, p-eIF4E and HIF-1α, and inhibition of mTOR with rapamycin or silencing HIF-1α with siRNA significantly attenuated OTA-enhanced glycolysis by reducing glycolysis related genes and thereby decreasing inflammatory effects of GES-1 cells. These results demonstrate that OTA activates inflammatory responses in GES-1 cells and this is controlled by mTOR/HIF-1α pathway-mediated glycolysis enhancement. Our findings provide a novel mechanistic view into OTA-induced gastric cytotoxicity.


Assuntos
Ocratoxinas , Transdução de Sinais , Serina-Treonina Quinases TOR , Humanos , Inibidor de NF-kappaB alfa , Linhagem Celular , Serina-Treonina Quinases TOR/genética , Glicólise , RNA Mensageiro , Epitélio
5.
Neurosci Lett ; 818: 137553, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949291

RESUMO

Disruption of the blood-brain barrier (BBB) following cerebral ischemia-reperfusion injury (CIRI) is a major factor in the pathophysiology of stroke. Endothelial cell-cell communication is essential for maintaining BBB integrity. By analyzing GSE227651 data, we found that a decrease in endothelial cell-cell communication mediated by Sema3/Nrp1 may be due to the downregulation of Nrp1 transcription, which could contribute to BBB breakdown after CIRI. We confirmed this hypothesis by using western blot analysis to show a reduction in Nrp1 protein levels in penumbra endothelial cells after CIRI in mice. We then overexpressed Nrp1 specifically in brain endothelial cells using adeno-associated virus in mice. Furthermore, Nrp1 overexpression had a protective effect on BBB integrity, as evidenced by a decrease in IgG and albumin leakage caused by CIRI in mice. Finally, we found that Nrp1 overexpression also reduced brain cell death and neurological deficits induced by cerebral ischemia-reperfusion in mice. Our findings suggest that Nrp1 downregulation may be a key factor in the breakdown of endothelial cell-cell communication and subsequent BBB disruption following CIRI. Targeting Nrp1-mediated pathways may be a promising approach for mitigating BBB damage and alleviating neurological consequences in stroke patients.


Assuntos
Barreira Hematoencefálica , Isquemia Encefálica , Traumatismo por Reperfusão , Acidente Vascular Cerebral , Animais , Humanos , Camundongos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Isquemia Encefálica/metabolismo , Infarto Cerebral/metabolismo , Regulação para Baixo , Células Endoteliais/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Neuropilina-1/metabolismo , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/metabolismo
6.
BMC Genomics ; 24(1): 795, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129780

RESUMO

BACKGROUND: GDSL esterase/lipases (GELPs) play important roles in plant growth, development, and response to biotic and abiotic stresses. Presently, an extensive and in-depth analysis of GELP family genes in cotton is still not clear enough, which greatly limits the further understanding of cotton GELP function and regulatory mechanism. RESULTS: A total of 389 GELP family genes were identified in three cotton species of Gossypium hirsutum (193), G. arboreum (97), and G. raimondii (99). These GELPs could be classified into three groups and eight subgroups, with the GELPs in same group to have similar gene structures and conserved motifs. Evolutionary event analysis showed that the GELP family genes tend to be diversified at the spatial dimension and certain conservative at the time dimension, with a trend of potential continuous expansion in the future. The orthologous or paralogous GELPs among different genomes/subgenomes indicated the inheritance from genome-wide duplication during polyploidization, and the paralogous GELPs were derived from chromosomal segment duplication or tandem replication. GELP genes in the A/D subgenome underwent at least three large-scale replication events in the evolutionary process during the period of 0.6-3.2 MYA, with two large-scale evolutionary events between 0.6-1.8 MYA that were associated with tetraploidization, and the large-scale duplication between 2.6-9.1 MYA that occurred during diploidization. The cotton GELPs indicated diverse expression patterns in tissue development, ovule and fiber growth, and in response to biotic and abiotic stresses, combining the existing cis-elements in the promoter regions, suggesting the GELPs involvements of functions to be diversification and of the mechanisms to be a hormone-mediated manner. CONCLUSIONS: Our results provide a systematic and comprehensive understanding the function and regulatory mechanism of cotton GELP family, and offer an effective reference for in-depth genetic improvement utilization of cotton GELPs.


Assuntos
Esterases , Lipase , Esterases/genética , Esterases/metabolismo , Lipase/genética , Lipase/metabolismo , Gossypium/metabolismo , Genoma de Planta , Duplicação Gênica , Biologia Computacional , Regulação da Expressão Gênica de Plantas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Exp Neurol ; 368: 114508, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598879

RESUMO

BACKGROUND: Intracerebral hemorrhage (ICH) is one of the stroke subtypes with the highest mortality. Secondary brain injury is associated with neurological dysfunction and poor prognosis after ICH. Caveolin-1 (CAV1) is the key protein of Caveolae. Previous studies have shown that CAV1 plays an important role in central nervous system diseases, and pointed out that in a collagenase-induced ICH model in vivo, CAV1 is associated with neuroinflammatory activation and poor neurological prognosis. In this study, we explore the role and the molecular mechanism of CAV1 in brain injury via a rat autologous whole blood injection model and an in vitro model of ICH. METHODS: Adult male Sprague-Dawley rats ICH model was induced through autologous whole blood injecting into the right basal ganglia. The changes in protein levels of CAV1 in brain tissues of ICH rats were detected by western blot analysis. The immunofluorescent staining was used to explore the changes of CAV1 in microglia/macrophages (Iba1+ cells). Lentivirus vectors were administered by intracerebroventricular injection to induce CAV1 overexpression and knockdown respectively. The western blot analysis, immunofluorescence staining, enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling and Nissl staining were performed to explore the role of CAV1 in secondary brain injury after ICH. Meanwhile, the rotarod test, foot fault test, adhesive-removal test, and Modified Garcia Test, as well as Morris Water Maze test, were performed to evaluate the behavioral cognitive impairment of ICH rats after genetic intervention. Additionally, BV-2 cells treated with oxygen hemoglobin for 24 h, were used as an in vitro model of ICH in this study to explore the molecular mechanism of CAV1 in brain injury; we performed western blot analysis after precise regulation of CAV1 in BV2 cells to observe changes in protein levels and phosphorylated levels of C-Src, IKK-ß, and NF-κB. RESULTS: The expression of CAV1 in microglia/macrophages (Iba1+ cells) was elevated and reached the peak at 24 h after ICH. CAV1 knockdown ameliorated ICH-induced neurological deficits, while CAV1 overexpression significantly worsened neurological dysfunction of ICH rats. CAV1 knockdown attenuated cellular apoptosis and promoted neuronal survival in brain tissues of ICH rats, while the ICH rats with CAV1 overexpression presented more cellular apoptosis and neuronal loss. Meanwhile, CAV1 knockdown inhibited the microglia activation and neuroinflammatory response, while CAV1 overexpression abolished these effects and aggravated neuroinflammation in brain tissues of ICH rats. Additionally, by inducing to CAV1 knockdown in BV2 cells in an in vitro model of ICH, the levels of p-C-Src, CAV-1, p-CAV-1, and p-IKK-ß in cytoplasm and the level of NF-κB p65 in nucleus of BV2 cells were significantly decreased, while they were increased by inducing to CAV1 overexpression. CONCLUSIONS: Our research revealed CAV1 aggravated neurological dysfunction in a rat ICH model. CAV1 knockdown exerted neuroprotective effect by suppressing microglia activation and neuroinflammation after ICH might via the C-Src/CAV1/IKK-ß/NF-κB signaling pathway.


Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Animais , Masculino , Ratos , Caveolina 1 , Hemorragia Cerebral/complicações , Doenças Neuroinflamatórias , NF-kappa B , Ratos Sprague-Dawley
8.
Brain Res ; 1820: 148556, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37648093

RESUMO

BACKGROUND: Ferroptosis is an important therapeutic target to alleviate early brain injury (EBI) after subarachnoid hemorrhage (SAH), yet the mechanism of neuronal ferroptosis after SAH remains unclear. System xc- dysfunction is one of the key pathways to induce ferroptosis. System xc- activity is mainly regulated by the expression of xCT. This study was designed to investigate the effect of xCT expression and System xc- activity on ferroptosis and EBI in an experimental SAH model both in vitro and in vivo. METHODS: SAH was induced in adult male Sprague-Dawley rats by injecting autologous blood into the prechiasmatic cistern. Primary neurons treated with oxyhemoglobin (10 µM) were used to mimic SAH in vitro. Plasmid transfection was used to induce xCT overexpression. Western blotting, immunofluorescence staining, measurement of cystine uptake, enzyme-linked immunosorbent assay, transmission electron microscopy, Nissl staining, and a series of neurobehavioral tests were conducted to explore the role of xCT and System xc- activity in ferroptosis and EBI after SAH. RESULTS: We found that System xc- dysfunction induced ferroptosis and exacerbated EBI after SAH in rats. xCT deficiency after SAH resulted in System xc- dysfunction, weakened neuronal antioxidant capacity and activated neuronal ferroptosis. xCT overexpression improved neuronal antioxidant capacity and inhibited neuronal ferroptosis by restoring System xc- activity. Rats with xCT overexpression after SAH presented with attenuated brain edema and inflammation, increased neuronal survival, and ameliorated neurological deficits. CONCLUSIONS: Our study revealed that restoring System xc- activity by xCT overexpression inhibited neuronal ferroptosis and EBI and improved neurological deficits after SAH.

9.
Food Chem Toxicol ; 176: 113756, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36997055

RESUMO

Aflatoxin G1 (AFG1), a member of the aflatoxin family with cytotoxic and carcinogenic properties, is one of the most common mycotoxins occurring in various agricultural products, animal feed, and human foods and drinks worldwide. Epithelial cells in the gastrointestinal tract are the first line of defense against ingested mycotoxins. However, the toxicity of AFG1 to gastric epithelial cells (GECs) remains unclear. In this study, we explored whether and how AFG1-induced gastric inflammation regulates cytochrome P450 to contribute to DNA damage in GECs. Oral administration of AFG1 induced gastric inflammation and DNA damage in mouse GECs associated with P450 2E1 (CYP2E1) upregulation. Treatment with the soluble TNF-α receptor sTNFR:Fc inhibited AFG1-induced gastric inflammation, and reversed CYP2E1 upregulation and DNA damage in mouse GECs. TNF-α-mediated inflammation plays an important role in AFG1-induced gastric cell damage. Using the human gastric cell line GES-1, AFG1 upregulated CYP2E1 through NF-κB, causing oxidative DNA damage in vitro. The cells were also treated with TNF-α and AFG1 to mimic AFG1-induced TNF-α-mediated inflammation. TNF-α activated the NF-κB/CYP2E1 pathway to promote AFG1 activation, which enhanced DNA cellular damage in vitro. In conclusion, AFG1 ingestion induces TNF-α-mediated gastric inflammation, which upregulates CYP2E1 to promote AFG1-induced DNA damage in GECs.


Assuntos
Aflatoxinas , Citocromo P-450 CYP2E1 , Camundongos , Humanos , Animais , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Células Epiteliais/metabolismo , Aflatoxinas/toxicidade , Estresse Oxidativo , Inflamação/induzido quimicamente
10.
Brain Res Bull ; 197: 31-41, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36990325

RESUMO

Remote Ischemic Postconditioning (RIPostC) has become a research hotspot due to its protective effect on the brain in clinical studies related to ischemic stroke. The purpose of this study is to investigate the protective effect of RIPostC after ischemic stroke in rats. The middle cerebral artery occlusion/reperfusion (MCAO/R) model was established by the wire embolization method. RIPostC was obtained by inducing temporary ischemia in the hind limbs of rats. First, based on the results of short-term behavioral measures and long-term neurological function experiments, RIPostC was found to have a protective effect on the MCAO/R model and to improve neurological recovery in rats. Compared to the sham group, RIPostC upregulated the expression levels of C-X-C motif chemokine receptor 4(CXCR4) in the brain and stromal cell-derived factor-1(SDF-1α) in peripheral blood. In addition, RIPostC upregulated CXCR4 expression on CD34 + stem cells in peripheral blood in flow cytometric assays. Meanwhile, according to the results of EdU/DCX co-staining and CD31 staining, it was found that the effect of RIPostC on ameliorating brain injury via SDF-1α/CXCR4 signaling axis may be associated with vascular neogenesis. Finally, after inhibiting the SDF-1α/CXCR4 signaling axis using AMD3100(Plerixafor), we found that the neuroprotective effect of RIPostC was diminished. Taken together, RIPostC can improve neurobehavioral damage induced by MCAO/R in rats, and its mechanism may be related to SDF-1α/CXCR4 signaling axis. Therefore, RIPostC can be used as an intervention strategy for stroke. SDF-1α/CXCR4 signaling axis can also be a potential target for intervention.


Assuntos
Compostos Heterocíclicos , Pós-Condicionamento Isquêmico , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Quimiocina CXCL12/metabolismo , Pós-Condicionamento Isquêmico/métodos , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Acidente Vascular Cerebral/terapia , Acidente Vascular Cerebral/complicações , Infarto da Artéria Cerebral Média/terapia , Infarto da Artéria Cerebral Média/complicações , Receptores CXCR4/metabolismo
11.
Lab Invest ; 103(3): 100034, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36925198

RESUMO

Lung adenocarcinoma is the most common type of lung cancer. We recently reported that inflammation-driven lung adenocarcinoma (IDLA) originates from alveolar type (AT)-II cells, which depend on major histocompatibility complex (MHC) class II to promote the expansion of regulatory T cells. The MHC class II-associated invariant chain (CD74) binds to the macrophage migration inhibitory factor (MIF), which is associated with promoting tumor growth and invasion. However, the role of MIF-CD74 in the progression of lung adenocarcinoma and the underlying mechanisms remain unclear. We aimed to explore the role of MIF-CD74 in the progression of lung adenocarcinoma and elucidate the mechanisms by which tumor necrosis (TNF)-α-mediated inflammation regulates CD74 and MIF expression in IDLA. In human lung adenocarcinoma, CD74 was upregulated on the surface of tumor cells originating from AT-II cells, which correlated positively with lymph node metastasis, tumor origin/nodal involvement/metastasis stage, and TNF-α expression. MIF interaction with CD74 promoted the proliferation and migration of A549 and H1299 cells in vitro. Using a urethane-induced IDLA mouse model, we observed that CD74 was upregulated in tumor cells and macrophages. MIF expression was upregulated in macrophages in IDLA. Blocking TNF-α-dependent inflammation downregulated CD74 expression in tumor cells and CD74 and MIF expression in macrophages in IDLA. Conditioned medium from A549 cells or activated mouse AT-II cells upregulated MIF in macrophages by secreting TNF-α. TNF-α-dependent lung inflammation contributes to the progression of lung adenocarcinoma by upregulating CD74 and MIF expression, and AT-II cells upregulate MIF expression in macrophages by secreting TNF-α. This study provides novel insights into the function of CD74 in the progression of IDLA.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Fatores Inibidores da Migração de Macrófagos , Pneumonia , Animais , Humanos , Camundongos , Antígenos de Histocompatibilidade Classe II/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares , Neoplasias Pulmonares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Fator de Necrose Tumoral alfa
12.
Immun Ageing ; 20(1): 12, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906583

RESUMO

BACKGROUND: Glycyrrhizic acid (GA), a saponin compound often used as a flavoring agent, can elicit anti-inflammatory and anti-tumor effects, and alleviate aging. However, the specific mechanism by which GA alters immune cell populations to produce these beneficial effects is currently unclear. RESULTS: In this study, we systematically analyzed single-cell sequencing data of peripheral blood mononuclear cells from young mice, aged mice, and GA-treated aged mice. Our in vivo results show that GA reduced senescence-induced increases in macrophages and neutrophils, and increased numbers of lymphoid lineage subpopulations specifically reduced by senescence. In vitro, GA significantly promoted differentiation of Lin-CD117+ hematopoietic stem cells toward lymphoid lineages, especially CD8+ T cells. Moreover, GA inhibited differentiation of CD4+ T cells and myeloid (CD11b+) cells by binding to S100 calcium-binding protein 8 (S100A8) protein. Overexpression of S100A8 in Lin- CD117+ hematopoietic stem cells enhanced cognition in aged mice and the immune reconstitution of severely immunodeficient B-NDG (NOD.CB17-Prkdcscid/l2rgtm1/Bcgen) mice. CONCLUSIONS: Collectively, GA exerts anti-aging effects by binding to S100A8 to remodel the immune system of aged mice.

13.
Neuromolecular Med ; 25(2): 272-285, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36737508

RESUMO

Transient receptor potential mucolipin-1 (TRPML1) is the most abundantly and widely expressed channel protein in the TRP family. While numerous studies have been conducted involving many aspects of TRPML1, such as its role in cell biology, oncology, and neurodegenerative diseases, there are limited reports about what role it plays in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Here we examined the function of TRPML1 in ICH-induced SBI. The caudal arterial blood of rats was injected into the caudate nucleus of basal ganglia to establish an experimental ICH model. We observed that lentivirus downregulated the expression level of TRPML1 and chemical agonist promoted the enzyme activity of TRPML1. The results indicated that the protein levels of TRPML1 in brain tissues increased 24 h after ICH. These results suggested that downregulated TRPML1 could significantly reduce inflammatory cytokines, and ICH induced the production of LDH and ROS. Furthermore, TRPML1 knockout relieved ICH-induced neuronal cell death and degeneration, and declines in learning and memory after ICH could be improved by downregulating the expression of TRPML1. In addition, chemical agonist-expressed TRPML1 showed the opposite effect and exacerbated SBI after ICH. In summary, this study demonstrated that TRPML1 contributed to brain injury after ICH, and downregulating TRPML1 could improve ICH-induced SBI, suggesting a potential target for ICH therapy.


Assuntos
Lesões Encefálicas , Doenças Neuroinflamatórias , Ratos , Animais , Hemorragia Cerebral/complicações , Hemorragia Cerebral/metabolismo , Morte Celular , Lesões Encefálicas/etiologia , Citocinas
14.
Oncogene ; 42(15): 1181-1195, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36823378

RESUMO

TSC-mTORC1 inhibition-mediated translational reprogramming is a major adaptation mechanism upon many stresses, such as low-oxygen, -ATP, and -amino acids. But how cancer cells hijack the adaptive pathway to survive under low-lactate stress when targeting glycolysis-related signaling remains uncertain. ETV4 is an oncogenic transcription factor frequently dysregulated in human cancer. We previously found that ETV4 is associated with tumor progression and poor prognosis in non-small cell lung cancer (NSCLC). In this study, we report that ETV4 controls HK1 expression and glycolysis-lactate production to activate mTORC1 by relieving TSC2 repression of Rheb in NSCLC cells. Targeting ETV4-induced low-lactate stress is an important input for TSC2 to inhibit mTORC1 and global protein synthesis, while the core stress granule components G3BP2 and HDAC6 are selectively translated. Mechanistically, G3BP2 recruits lysosomal-TSC2 to suppress mTORC1. HDAC6 deacetylates TSC2 to sustain protein stability and associates with G3BP2 to facilitate more recruiting of TSC2 to inactivate mTORC1. In addition, the microtubule retrograde transport activity of HDAC6 drives the aggregate-like perinuclear-mTOR distribution paralleled by lower mTORC1 activity under stress. Thus, HDAC6-G3BP2 is the key complex that promotes lysosomal-TSC2 and suppresses mTORC1 when targeting ETV4, which might represent a critical adaptive mechanism for cell survival under low-lactate challenges.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Ácido Láctico/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Lisossomos/metabolismo , Proteínas Proto-Oncogênicas c-ets/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
15.
Stroke Vasc Neurol ; 8(3): 217-228, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36526331

RESUMO

BACKGROUND: Sex differences affect the occurrence, progression and regression of subarachnoid haemorrhage (SAH). Oestrogen plays a protective role in alleviating the vasospasm and neuronal apoptosis induced by SAH. However, whether oestrogen affects blood‒brain barrier (BBB) integrity has not been fully studied. Oestrogen has been found to regulate the sonic hedgehog (SHH) signalling pathway through the oestrogen receptor in gastric cancer and adrenal glands, and the SHH signalling pathway has an important role in maintaining the BBB by upregulating the expression of tight junction proteins. In this study, we investigated the relationship between oestrogen and the SHH signalling pathway using clinical data and established an experimental SAH model to explore whether oestrogen could ameliorate BBB damage after SAH through the SHH pathway. METHODS: Correlations between oestrogen and the SHH pathway were analysed by patients' cerebrospinal fluid (CSF) samples and the Genotype-Tissue Expression database (GTEx). Then, an experimental rat SAH model was established using the endovascular perforation method and treated with oestrogen, oestrogen inhibitors and SHH signalling pathway inhibitors. Then, the effects of oestrogen on BBB damage were analysed by western blot, immunofluorescence and neurobehavioural experiments. RESULTS: ESLIA detection and correlation analysis showed that oestrogen levels in patients' CSF were positively correlated with the SHH pathway, which was further verified by GTEx gene-correlation analysis. SHH was found to be mainly expressed in neurons and astrocytes in rats under physiological conditions and was upregulated by oestrogen pretreatment. In the SAH model, oestrogen pretreatment was found to reverse SAH-induced decreases in the SHH pathway, which were counteracted by oestrogen receptor inhibitors. Furthermore, oestrogen pretreatment reduced SAH-induced BBB damage, brain oedema and neurological dysfunction, which were eliminated by SHH pathway inhibitors. CONCLUSION: In conclusion, we demonstrate here that oestrogen pretreatment ameliorates brain injury after SAH, at least in part through SHH pathway-mediated BBB protection.


Assuntos
Barreira Hematoencefálica , Hemorragia Subaracnóidea , Feminino , Ratos , Masculino , Animais , Barreira Hematoencefálica/metabolismo , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/tratamento farmacológico , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/uso terapêutico , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Proteínas Hedgehog/uso terapêutico , Estrogênios/farmacologia , Estrogênios/metabolismo , Estrogênios/uso terapêutico
16.
Brain Res Bull ; 193: 95-105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36566946

RESUMO

Subarachnoid hemorrhage (SAH), a type of hemorrhagic stroke, is a neurological emergency associated with a high morbidity and mortality rate. After SAH, early brain injury (EBI) is the leading cause of poor prognosis in SAH patients. Peroxiredoxins (PRDXs) are a family of sulphhydryl-dependent peroxidases. Peroxiredoxin-3 (PRDX3) is mainly located in the mitochondria of neurons, which can remove hydrogen peroxide (H2O2); however, the effect of PRDX3 on EBI after SAH remains unclear. In this study, an endovascular perforation model was used to mimic SAH in Sprague Dawley rats in vivo. The results revealed that after SAH, PRDX3 levels decreased in the neurons. PRDX3 overexpression by neuron-specific adeno-associated viruses upregulated PRDX3 levels. Furthermore, PRDX3 overexpression improved long- and short-term behavioral outcomes and alleviated neuronal impairment in rats. Nissl staining revealed that the upregulation of PRDX3 promoted cortical neuron survival. PRDX3 overexpression decreased the H2O2 content and downregulated caspase-9 expression. In conclusion, PRDX3 participates in neuronal protection by inhibiting the neuronal mitochondria-mediated death pathway; PRDX3 may be an important target for EBI intervention after SAH.


Assuntos
Lesões Encefálicas , Fármacos Neuroprotetores , Hemorragia Subaracnóidea , Animais , Ratos , Apoptose , Lesões Encefálicas/metabolismo , Peróxido de Hidrogênio/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Peroxirredoxina III/farmacologia , Ratos Sprague-Dawley , Hemorragia Subaracnóidea/metabolismo
17.
Exp Neurol ; 361: 114302, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36549422

RESUMO

Intracerebral hemorrhage (ICH) is one type of stroke with a high incidence and mortality. Mitochondria provide energy for various life processes and regulate calcium-mediated signaling pathways by taking up calcium ions from cytoplasm. Mitochondrial calcium uptake family 3 (MICU3) is a tissue-specific enhancer of mitochondrial calcium uptake. The effects and mechanisms of MICU3 in ICH are unknown. In this study, we aimed to explore the role of MICU3 in ICH in rats and neuronal models. First, we constructed ICH model both in vivo and in vitro and observed increased expression of MICU3. Then lentivirus was transduced to knock down MICU3. We observed that knockdown of MICU3 significantly reduced mitochondrial uptake of calcium in primary neurons. Moreover, the downregulation of MICU3 attenuated cell apoptosis and decreased the accumulation of reactive oxygen species (ROS). Recovery of neurobehavioral and cognitive function also benefited from downregulation of MICU3. The findings demonstrated that MICU3 played an important role in cell apoptosis, oxidative stress, and maintenance of mitochondrial structure and function, and promoted rehabilitation of neurobehavior. In conclusion, MICU3 is expected to be a molecular marker and a potential therapeutic target for ICH.


Assuntos
Lesões Encefálicas , Neoplasias Encefálicas , Animais , Ratos , Apoptose , Lesões Encefálicas/metabolismo , Cálcio/metabolismo , Hemorragia Cerebral/metabolismo , Regulação para Baixo , Proteínas de Transporte da Membrana Mitocondrial , Estresse Oxidativo
18.
Cancer Sci ; 114(4): 1740-1756, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36478492

RESUMO

Limb expression 1-like protein (LIX1L) might be an RNA-binding protein involved in post-transcriptional regulation. However, little is known regarding the biological function and mechanism of LIX1L in cancer cells. Here we demonstrate a clear correlation between LIX1L expression and epithelial-mesenchymal transition (EMT) markers in 81 non-small cell lung cancer (NSCLC) tissues and The Cancer Genome Atlas database, suggesting that LIX1L is a mesenchymal marker. Besides, LIX1L expression is obviously elevated in TGFß1-induced EMT NSCLC cells and enhances cell migration, invasion, anoikis resistance, epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance, and proliferation. Interestingly, the increased LIX1L expression prominently localizes to the nucleoli, where it physically interacts with the key ribosome biogenesis regulator NCL protein, inducing ribosomal RNA (rRNA) synthesis in EMT NSCLC cells. NCL knockdown or inhibition of rRNA synthesis reverses the enhanced EMT functions and proliferation ability caused by LIX1L overexpression in NSCLC cells, indicating that NCL expression and rRNA synthesis participates in LIX1L-mediated biological functions during EMT. Collectively, our findings suggest that the LIX1L-NCL-rRNA synthesis axis is a novel EMT-activated mechanism. Targeting the pathway might be a therapeutic option for EMT and EGFR-TKI resistance in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Receptores ErbB , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Ribossomos/metabolismo , RNA Ribossômico/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Nucleolina
19.
J Neurochem ; 164(1): 94-114, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36424866

RESUMO

Necroptosis-mediated cell death is an important mechanism in intracerebral hemorrhage (ICH)-induced secondary brain injury (SBI). Our previous study has demonstrated that receptor-interacting protein 1 (RIP1) mediated necroptosis in SBI after ICH. However, further mechanisms, such as the roles of receptor-interacting protein 3 (RIP3), mixed lineage kinase domain-like protein (MLKL), and Ca2+ /calmodulin-dependent protein kinase II (CaMK II), remain unclear. We hypothesized that RIP3, MLKL, and CaMK II might participate in necroptosis after ICH, including their phosphorylation. The ICH model was induced by autologous blood injection. First, we found the activation of necroptosis after ICH in brain tissues surrounding the hematoma (propidium iodide staining). Meanwhile, the phosphorylation and expression of RIP3, MLKL, and CaMK II were differently up-regulated (western blotting and immunofluorescent staining). The specific inhibitors could suppress RIP3, MLKL, and CaMK II (GSK'872 for RIP3, necrosulfonamide for MLKL, and KN-93 for CaMK II). We found the necroptosis surrounding the hematoma and the concrete interactions in RIP3-MLKL/RIP3-CaMK II also both decreased after the specific intervention (co-immunoprecipitation). Then we conducted the short-/long-term neurobehavioral tests, and the rats with specific inhibition mostly had better performance. We also found less blood-brain barrier (BBB) injury, and less neuron loss (Nissl staining) in intervention groups, which supported the neurobehavioral tests. Besides, oxidative stress and inflammation were also alleviated with intervention, which had significant less reactive oxygen species (ROS), tumor necrosis factor (TNF)-α, lactate dehydrogenase (LDH), Iba1, and GFAP surrounding the hematoma. These results confirmed that RIP3-phosphorylated MLKL and CaMK II participate in ICH-induced necroptosis and could provide potential targets for the treatment of ICH patients.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Necroptose , Proteínas Quinases , Proteína Serina-Treonina Quinases de Interação com Receptores , Animais , Ratos , Apoptose , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Hemorragia Cerebral , Hematoma , Necrose , Neurônios , Fator de Necrose Tumoral alfa , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
20.
ACS Omega ; 7(48): 44134-44146, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506199

RESUMO

Corrugated plate separators are widely used in the field of gas-liquid separation because of their excellent separation performance. The separation effect is very sensitive to the internal auxiliary structure of drainage hooks, so it is extremely important to study the action principle of drainage hooks to optimize the performance of corrugated plate separators. In this paper, Fluent is used as the solver and the realizable k-ε model is used to compare the separation performance of unhooked, single-hooked, and double-hooked corrugated plates. The results show that the separation efficiency of wave plates with hooks can reach 100%, the separation efficiency of wave plates without hooks is about 90%, and the superiority of the separation efficiency of single-hook and double-hook wave plates is related to the droplet partition diameter, which is positively correlated with Re. The pressure drop and separation efficiency increase with the increase of plate hook spacing, and the pressure drop and separation efficiency of single-hook and double-hook corrugated plates have different performance advantage zones influenced by Re and K a. When the Re is 9.64 × 103 and K a is 0.294, the separation effect of corrugated plates with the single hook and double hook is the same. Through the analysis of the gas-phase flow field and droplet motion trajectory, it is found that the drainage hook enhances the separation effect of the corrugated plate separator by increasing the local gas velocity and forming a vortex inside the drainage hook.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA