Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
J Orthop Surg Res ; 19(1): 467, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39118123

RESUMO

BACKGROUND: Osteosarcoma is a soft tissue neoplasm with elevated recurrence risk and highly metastatic potential. Metal response element binding transcriptional factor 2 (MTF2) has been revealed to exert multiple activities in human tissues. The present research was conducted to explore the functions and related response mechanism of MTF2 in osteosarcoma which have not been introduced yet. METHODS: Bioinformatics tools identified the differential MTF2 expression in osteosarcoma tissues. MTF2 expression in osteosarcoma cells was examined with Western blot. Cell Counting Kit-8 (CCK-8) assay, 5-Ethynyl-2'-deoxyuridine (EDU) staining, wound healing as well as transwell assays measured cell proliferation, migration and invasion, respectively. Flow cytometry assay detected the cellular apoptotic level. Western blot also measured the expressions of proteins associated with epithelial mesenchymal transition (EMT), apoptosis and enhancer of zeste homolog 2 (EZH2)/secreted frizzled-related protein 1 (SFRP1)/Wnt signaling. Co-immunoprecipitation (Co-IP) assay confirmed MTF2-EZH2 interaction. RESULTS: MTF2 expression was increased in osteosarcoma tissues and cells. MTF2 interference effectively inhibited the proliferation, migration and invasion of osteosarcoma cells and promoted the cellular apoptotic rate. MTF2 directly bound to EZH2 and MTF2 silence reduced EZH2 expression, activated SFRP1 expression and blocked Wnt signaling in osteosarcoma cells. EZH2 upregulation or SFRP1 antagonist WAY-316606 partly counteracted the impacts of MTF2 down-regulation on the SFRP1/Wnt signaling and the biological phenotypes of osteosarcoma cells. CONCLUSIONS: MTF2 might down-regulate SFRP1 to activate Wnt signaling and drive the progression of osteosarcoma via interaction with EZH2 protein.


Assuntos
Neoplasias Ósseas , Proliferação de Células , Proteína Potenciadora do Homólogo 2 de Zeste , Osteossarcoma , Via de Sinalização Wnt , Humanos , Apoptose/fisiologia , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Osteossarcoma/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Via de Sinalização Wnt/fisiologia , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo
2.
RSC Adv ; 14(15): 10672-10686, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38572345

RESUMO

Photothermal materials have shown great potential for cancer detection and treatment due to their excellent photothermal effects. Circulating tumor cells (CTCs) are tumor cells that are shed from the primary tumor into the blood and metastasize. In contrast to other tumor markers that are free in the blood, CTCs are a collective term for all types of tumor cells present in the peripheral blood, a source of tumor metastasis, and clear evidence of tumor presence. CTCs detection enables early detection, diagnosis and treatment of tumors, and plays an important role in cancer prevention and treatment. This review summarizes the application of various photothermal materials in CTC detection, including gold, carbon, molybdenum, phosphorus, etc. and describes the significance of CTC detection for early tumor diagnosis and tumor prognosis. Focus is also put on how various photothermal materials play their roles in CTCs detection, including CT, imaging and photoacoustic and therapeutic roles. The physicochemical properties, shapes, and photothermal properties of various photothermal materials are discussed to improve the detection sensitivity and efficiency and to reduce the damage to normal cells. These photothermal materials are capable of converting radiant light energy into thermal energy for highly-sensitive CTCs detection and improving their photothermal properties by various methods, and have achieved good results in various experiments. The use of photothermal materials for CTCs detection is becoming more and more widespread and can be of significant help in early cancer screening and later treatment.

3.
NPJ Precis Oncol ; 8(1): 22, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287113

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive cancer with distant metastasis. Accumulated evidence has demonstrated that exosomes are involved in TNBC metastasis. Elucidating the mechanism underlying TNBC metastasis has important clinical significance. In the present study, exosomes were isolated from clinical specimens and TNBC cell lines. Colony formation, EdU incorporation, wound healing, and transwell assays were performed to examine TNBC cell proliferation, migration, and metastasis. Macrophage polarization was evaluated by flow cytometry and RT-qPCR analysis of polarization markers. A mouse model of subcutaneous tumor was established for assessment of tumor growth and metastasis. RNA pull-down, RIP and Co-IP assays were used for analyzing molecular interactions. Here, we proved that high abundance of circRHCG was observed in exosomes derived from TNBC patients, and increased exosomal circRHCG indicated poor prognosis. Silencing of circRHCG suppressed TNBC cell proliferation, migration, and metastasis. TNBC cell-derived exosomes promoted M2 polarization via delivering circRHCG. Exosomal circRHCG stabilized BTRC mRNA via binding FUS and naturally enhanced BTRC expression, thus promoting the ubiquitination and degradation of TFEB in THP-1 cells. In addition, knockdown of BTRC or overexpression of TFEB counteracted exosomal circRHCG-mediated facilitation of M2 polarization. Furthermore, exosomal circRHCG promoted TNBC cell proliferation and metastasis by facilitating M2 polarization. Knockdown of circRHCG reduced tumor growth, metastasis, and M2 polarization through the BTRC/TFEB axis in vivo. In summary, exosomal circRHCG promotes M2 polarization by stabilizing BTRC and promoting TFEB degradation, thereby accelerating TNBC metastasis and growth. Our study provides promising therapeutic strategies against TNBC.

4.
Neoplasia ; 45: 100942, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37839160

RESUMO

BACKGROUND: Tumor antigenicity and efficiency of antigen presentation jointly influence tumor immunogenicity, which largely determines the effectiveness of immune checkpoint blockade (ICB). However, the role of altered antigen processing and presentation machinery (APM) in breast cancer (BRCA) has not been fully elucidated. METHODS: A series of bioinformatic analyses and machine learning strategies were performed to construct APM-related gene signatures to guide personalized treatment for BRCA patients. A single-sample gene set enrichment analysis (ssGSEA) algorithm and weighted gene co-expression network analysis (WGCNA) were combined to screen for BRCA-specific APM-related genes. The non-negative matrix factorization (NMF) algorithm was used to divide the cohort into different clusters and the fgsea algorithm was applied to investigate the altered signaling pathways. Random survival forest (RSF) and the least absolute shrinkage and selection operator (Lasso) Cox regression analysis were combined to construct an APM-related risk score (APMrs) signature to predict overall survival. Furthermore, a nomogram and decision tree were generated to improve predictive accuracy and risk stratification for individual patients. Based on Tumor Immune Dysfunction and Exclusion (TIDE) method, random forest (RF) and Lasso logistic regression model were combined to establish an APM-related immunotherapeutic response score (APMis). Finally, immune infiltration, immunomodulators, mutational patterns, and potentially applicable drugs were comprehensively analyzed in different APM-related risk groups. IHC staining was used to assess the expression of APM-related genes in clinical samples. RESULTS: In this study, APMrs and APMis showed favorable performances in risk stratification and therapeutic prediction for BRCA patients. APMrs exhibited more powerful prognostic capacity and accurate survival prediction compared to conventional clinicopathological features. APMrs was closely associated with distinct mutational patterns, immune cell infiltration and immunomodulators expression. Furthermore, the two APM-related gene signatures were independently validated in external cohorts with prognosis or immunotherapeutic responses. Potential applicable drugs and targets were mined in the APMrs-high group. APM-related genes were further validated in our in-house samples. CONCLUSION: The APM-related gene signatures established in our study could improve the personalized assessment of survival risk and guide ICB decision-making for BRCA patients.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Oncogenes , Mama , Biologia Computacional , Fatores Imunológicos , Prognóstico
5.
Drug Resist Updat ; 69: 100974, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37230023

RESUMO

AIMS: Neoadjuvant chemotherapy (NAC) is the primary preoperative therapy for breast cancer. The luminal subtype of breast cancer shows less NAC response than the basal subtype, with an inefficient NAC treatment effect. Understanding of the molecular and cellular mechanisms responsible for this chemoresistance is an important issue when determining optimal treatment. METHODS: Doxorubicin-induced apoptosis and ferroptosis was investigated using cytotoxicity, western blotting, and flow cytometry assays. The role of GATA3 in modulating doxorubicin-induced cell death was investigated both in vitro and in vivo. RNA-seq, qPCR, ChIP, and luciferase assay and association analyses were performed to investigate the regulation of CYB5R2 by GATA3. The function of GATA3 and CYB5R2 in regulating doxorubicin-induced ferroptosis was evaluated with iron, ROS, and lipid peroxidation detection assays. Immunohistochemistry was performed for results validation. RESULTS: Doxorubicin-induced basal breast cancer cell death is dependent on iron-mediated ferroptosis. Overexpression of the luminal signature transcriptional factor GATA3 mediates doxorubicin resistance. GATA3 promotes cell viability by decreasing ferroptosis-related gene CYB5R2 expression and by maintaining iron homeostasis. Analyzing data from the public and our cohorts demonstrates that GATA3 and CYB5R2 are associated with NAC response. CONCLUSIONS: GATA3 promotes doxorubicin resistance by inhibiting CYB5R2-mediated iron metabolism and ferroptosis. Therefore, patients with breast cancer who display high GATA3 expression do not benefit from doxorubicin-based NAC regimens.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Apoptose , Ferro/metabolismo , Ferro/uso terapêutico , Catálise , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Fator de Transcrição GATA3/uso terapêutico
6.
Medicine (Baltimore) ; 102(15): e33530, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37058053

RESUMO

N6-methyladenosine (m6A)-related lncRNAs could be involved in the development of multiple tumors with an unknown role in lung adenocarcinoma (LUAD). Hence, gene expression data and clinical data of LUAD patients were acquired from The Cancer Genome Atlas Database. The prognostic m6A-related lncRNAs were identified through differential lncRNA expression analysis and Spearman's correlation analysis. The least absolute shrinkage and selection operator regression was used to establish the prognostic risk model, so as to evaluate and validate the predictive performance with survival analysis and receiver operating characteristic curve analysis. The expression of immune checkpoints, immune cell infiltration and drug sensitivity of patients in different risk groups were analyzed separately. A total of 19 prognostic m6A-related lncRNAs were identified to set up the prognostic risk model. The patients were divided into high- and low-risk groups based on the median value of the risk scores. Compared with the patients in the low-risk group, the prognosis of the patients in the high-risk group was relatively worse. The receiver operating characteristic curves indicated that this model had excellent sensitivity and specificity. Multivariate Cox regression analysis demonstrated that the risk score could be supposed as an independent prognostic risk factor. We highlighted that the risk scores were correlated with immune cell infiltration and drug sensitivity for constructing a prognostic risk model in LUAD patients based on m6A-related lncRNAs.


Assuntos
Adenocarcinoma , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Imunoterapia , Prognóstico , Pulmão
7.
Front Genet ; 14: 1077126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923798

RESUMO

Objective: BOLA2B is a recently discovered protein-coding gene. Here, pan-cancer analysis was conducted to determine the expression patterns of BOLA2B and its impact on immune response, gene mutation, and possible molecular biological mechanisms in different tumors, together with investigating its potential usefulness for cancer prognosis. Methods: Data on BOLA2B expression and mutations were downloaded from TCGA and GTEx databases. Clinical survival data from TCGA were used to analyze the prognostic value of BOLA2B. TIMER and ESTIMATE algorithms were used to assess correlations between BOLA2B and tumor-infiltrating immune cells, immune cytokines, and immune scores. Results: BOLA2B was found to be highly expressed at both mRNA and protein levels in multiple tumors, where it was associated with worse overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in all cancers apart from ovarian cancer. BOLA2B was also found to be positively correlated with copy number variation (CNV), and mutations in TP53, TTN, and MUC16 were found to influence BOLA2B expression. Post-transcriptional modifications, including m5C, m1A, and m6A, were observed to regulate BOLA2B expression in all cancers. Functional analysis showed that BOLA2B was enriched in pathways associated with iron-sulfur cluster formation, mTOR-mediated autophagy, and cell cycle inhibition. Decreased BOLA2B expression induced the proliferation of breast cancer cells and G2/M cell cycle arrest. Conclusion: BOLA2B was found to be highly expressed in malignant tumors and could be used as a biomarker of poor prognosis in multiple cancers. Further investigation into BOLA2B's role and molecular functions in cancer would provide new insights for cancer diagnosis and treatment.

8.
Nanomaterials (Basel) ; 13(3)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36770512

RESUMO

Despite the significant improvement in the survival rate of cancer patients, the total cure of bone cancer is still a knotty clinical challenge. Traditional surgical resectionof bone tumors is less than satisfactory, which inevitably results in bone defects and the inevitable residual tumor cells. For the purpose of realizing minimal invasiveness and local curative effects, photothermal therapy (PTT) under the irradiation of near-infrared light has made extensive progress in ablating tumors, and various photothermal therapeutic agents (PTAs) for the treatment of bone tumors have thus been reported in the past few years, has and have tended to focus on osteogenic bio-scaffolds modified with PTAs in order to break through the limitation that PTT lacks, osteogenic capacity. These so-called bifunctional scaffolds simultaneously ablate bone tumors and generate new tissues at the bone defects. This review summarizes the recent application progress of various bifunctional scaffolds and puts forward some practical constraints and future perspectives on bifunctional scaffolds for tumor therapy and bone regeneration: two hawks with one arrow.

9.
Pharmacol Res ; 188: 106656, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36640859

RESUMO

Mesenchymal-epithelial transition factor (C-Met) has been acknowledged as a significant therapeutic target for treating lung adenocarcinoma (LUAD). However, the potential application of chimeric antigen receptors (CAR)-modified natural killer (NK) cells targeting c-Met in LUAD is rarely explored. In this study, bioinformatic databases were searched and a tissue microarray (TMA) was enrolled to investigate expression status and prognostic role of c-Met in LUAD. Then, four types of c-Met-CAR structures were designed and prepared. The engineering CAR-NK cells containing c-Met-CARs were transfected, verified and characterized. The tumor-inhibitory role of c-Met-CAR-NK cells was finally evaluated in vitro and in vivo. The results demonstrated that c-Met expression elevated and confirmed that high c-Met expression was significantly associated with unfavorable prognosis in LUAD. Then, C-Met-CAR-NK cells were successfully constructed and DAP10 designed in CAR structure was a favorable stimulator for NK cell activation. CCN4 containing DAP10 co-stimulator exhibited the strongest cytotoxicity compared with other CAR-NK cells. Furthermore, CCN4 cells also exerted the prominent tumor-inhibitory effect on xenograft tumor growth. Collectively, this study suggests that DAP10 is a potent stimulator in CAR structure for NK cell activation, and CCN4-based immunotherapy may represent a promising strategy for the treatment of c-Met-positive LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Humanos , Linhagem Celular Tumoral , Células Matadoras Naturais , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/terapia , Adenocarcinoma de Pulmão/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/metabolismo
10.
Front Oncol ; 12: 1030571, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36457503

RESUMO

Breast cancer patients' outcomes have improved dramatically in recent years, but relapses and poor prognosis remain common due to its aggressiveness and heterogeneity. The development of reliable biomarkers is still needed for predicting prognosis and treatment effectiveness. Recently, a growing body of research suggests that pseudouridine synthases contribute to the development of many cancers, but their contribution to breast cancer remains largely unknown. Using an integrative analysis, we selected pseudouridine synthase1(PUS1) as the candidate biomarker. A tissue microarray of 131 breast cancer patients was then utilized to determine the clinical significance and prognostic value of PUS1. RNA sequencing analysis was conducted to identify downstream genes that differ between control and PUS1 knockdown cells. The effect of PUS1 on phenotypes of cells was assessed using cell proliferation, colony formation, and transwell invasion assays. We found that breast tumors overexpressed PUS1 compared with paired normal tissues. PUS1 expression was positively correlated with triple-negative breast cancer (TNBC) status (P= 0.020) and tumor grade (P <0.0001), but not with age (P= 0.736), tumor size (P= 0.608), lymph node (P= 0.742), oestrogen receptor (ER) (P= 0.162), progesterone receptor (PR) (P= 0.901), human epidermal growth factor receptor 2 (HER2) (P= 0.608) or tumor stage (P= 0.411). Comparatively, patients with high PUS1 levels had shorter overall survival time (P=0.0001) and relapse-free survival time (P = 0.0093). A univariate and multivariate survival analysis suggested that the overall survival of patients was independently influenced by the PUS1 score (Univariate Cox P <0.0001, HR=5.176, 95% CI =2.420-11.07; Multivariate Cox P = 0.001, HR = 5.291, 95% CI =1.893-14.78). RNA sequencing data revealed the PUS1 knockdown significantly affects a series of cancer related biological process such as regulation of cell proliferation and cell migration, as well as KEGG pathways including Mitophagy and PI3K-Akt signaling. In vitro, knockdown of PUS1 significantly suppressed the proliferation and colony formation abilities of MDA-MB-231 cells and BT-549 cells. Additionally, the ability of tumor cells to invade was remarkably attenuated in low PUS1 expression groups compared with the corresponding control groups. Our results suggested that PUS1 is a novel biomarker that predicts poor outcomes in patients with breast cancer and may prove to be a promising treatment target.

11.
Cancers (Basel) ; 14(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36358616

RESUMO

It is generally considered that non-coding RNAs do not encode proteins; however, more recently, studies have shown that lncRNAs and circRNAs have ORFs which are regions that code for peptides/protein. On account of the lack of 5'cap structure, translation of circRNAs is driven by IRESs, m6A modification or through rolling amplification. An increasing body of evidence have revealed different functions and mechanisms of ncRNA-encoded peptides/proteins in cancers, including regulation of signal transduction (Wnt/ß-catenin signaling, AKT-related signaling, MAPK signaling and other signaling), cellular metabolism (Glucose metabolism and Lipid metabolism), protein stability, transcriptional regulation, posttranscriptional regulation (regulation of RNA stability, mRNA splicing and translation initiation). In addition, we conclude the existing detection technologies and the potential of clinical applications in cancer therapy.

12.
Nat Commun ; 13(1): 6030, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229481

RESUMO

Fibrosis disrupts adipose tissue (AT) homeostasis and exacerbates metabolic dysfunction upon chronic caloric excess. The molecular mechanisms linking adipocyte plasticity to AT fibrosis are largely unknown. Here we show that the Hippo pathway is coupled with TGFß signaling to orchestrate a cellular and/or functional shift of adipocytes from energy storage to extracellular matrix (ECM) remodeling in AT fibrosis. We found that Lats1/2-knockout adipocytes could dedifferentiate into DPP4+ progenitor cells and convert to DPP4- myofibroblasts upon TGFß stimulation. On the other hand, Hippo pathway inhibition during obesity impaired adipocyte identity while promoted ECM remodeling activity of adipocytes. Macrophages recruited by CCL2 produced TGFß to accelerate AT fibrosis. YAP and TAZ, the Hippo downstream effectors, enhanced SMAD2 stability to promote fibrotic responses. Importantly, inhibition of YAP/TAZ activity in obese mice markedly relieved AT fibrosis and improved metabolic homeostasis. Together, our findings identify the Hippo pathway as a molecular switch in the initiation and development of AT fibrosis, implying it as a therapeutic target.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Via de Sinalização Hippo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dipeptidil Peptidase 4/metabolismo , Fibrose , Camundongos , Proteínas Serina-Treonina Quinases/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Nat Immunol ; 22(10): 1268-1279, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556885

RESUMO

Metabolic inflammation is closely linked to obesity, and is implicated in the pathogenesis of metabolic diseases. FTO harbors the strongest genetic association with polygenic obesity, and IRX3 mediates the effects of FTO on body weight. However, in what cells and how IRX3 carries out this control are poorly understood. Here we report that macrophage IRX3 promotes metabolic inflammation to accelerate the development of obesity and type 2 diabetes. Mice with myeloid-specific deletion of Irx3 were protected against diet-induced obesity and metabolic diseases via increasing adaptive thermogenesis. Mechanistically, macrophage IRX3 promoted proinflammatory cytokine transcription and thus repressed adipocyte adrenergic signaling, thereby inhibiting lipolysis and thermogenesis. JNK1/2 phosphorylated IRX3, leading to its dimerization and nuclear translocation for transcription. Further, lipopolysaccharide stimulation stabilized IRX3 by inhibiting its ubiquitination, which amplified the transcriptional capacity of IRX3. Together, our findings identify a new player, macrophage IRX3, in the control of body weight and metabolic inflammation, implicating IRX3 as a therapeutic target.


Assuntos
Proteínas de Homeodomínio/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Adipócitos/metabolismo , Adulto , Animais , Peso Corporal/fisiologia , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Dieta/métodos , Células HEK293 , Humanos , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Células RAW 264.7 , Células THP-1 , Termogênese/fisiologia , Transcrição Gênica/fisiologia , Adulto Jovem
15.
J Transl Med ; 19(1): 389, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34507559

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) is a common subtype of lung cancer with high recurrence rate and fatality. Circ_0001361 has been recognized as key regulators in various malignancies, but its roles in LUAD remain ambiguous. METHODS: Circ_0001361, miR-525-5p, and VMA21 levels were assessed by RT-qPCR. The growth and metastasis of LUAD cells were detected by MTT, colony formation, wound scratch, and transwell assays, respectively. The interaction between circ_0001361/VMA21 and miR-525-5p was detected by dual luciferase, RNA immunoprecipitation, and RNA pull-down assays. VMA21 protein level was detected by Western blotting. Nude mouse xenograft model was established to determine the role of circ_0001361 in tumor growth in vivo. RESULTS: Circ_0001361 was up-regulated, while miR-525-5p was down-regulated in LUAD tissues and cells. Functional experiments demonstrated that circ_0001361 drove LUAD cell growth and metastasis. Mechanistically, circ_0001361 functioned as a sponge of miR-525-5p to up-regulate downstream target VMA21 level. MiR-525-5p/VMA21 axis was involved in circ_0001361-mediated malignant phenotypes of LUAD cells. Finally, inhibition of circ_0001361 restrained in vivo xenograft tumor growth via regulating miR-525-5p/VMA21 axis. CONCLUSION: Our findings elucidate that circ_0001361 facilitates the tumorigenesis and development of LUAD through miR-525-5p/VMA21 axis, providing evidence for circ_0001361 as a potential prognosis biomarker and therapeutic target for clinical treatment of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , MicroRNAs/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Adenocarcinoma de Pulmão/genética , Animais , Humanos , Neoplasias Pulmonares/genética , Camundongos , MicroRNAs/genética , Recidiva Local de Neoplasia , RNA Circular , ATPases Vacuolares Próton-Translocadoras/genética
16.
Drug Des Devel Ther ; 15: 3605-3616, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447241

RESUMO

PURPOSE: Prostate cancer (PCa) is the second leading cause of cancer-related death among men in developed countries. Cabazitaxel (CBZ) is recommended as one of the most active chemotherapy agents for PCa. This study aimed to develop a hyaluronic acid (HA) decorated, cabazitaxel-prodrug (HA-CBZ) and orlistat (ORL) co-loaded nano-system against the prostate cancer in vitro and in vivo. METHODS: Cabazitaxel-prodrug was firstly synthesized by conjugating HA with CBZ through the formation of ester bonds. HA contained ORL and CBZ prodrug co-loaded lipid-polymer hybrid nanoparticles (ORL/HA-CBZ/LPNs) were constructed and characterized in terms of particle size, zeta potential, drug loading capacity and stability. The antitumor efficiency and systemic toxicity of LPNs were evaluated in vitro and in vivo. RESULTS: The resulting ORL/HA-CBZ/LPNs were 150.9 nm in particle size with narrow distribution and high entrapment efficiency. The minimum combination index of 0.57 was found at a drug ratio of 1:2 (ORL:HA-CBZ, w/w) in the drug co-loaded formulations, indicating the strongest synergism effect. ORL/HA-CBZ/LPNs demonstrated an enhanced in vitro and in vivo antitumor effect compared with single drug loaded LPNs and free drug formulations. CONCLUSION: ORL/HA-CBZ/LPNs showed remarkable synergism cytotoxicity and the best tumor inhibition efficiency in mice with negligible systemic toxicity. ORL/HA-CBZ/LPNs can be highly useful for targeted prostate cancer therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Nanopartículas , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Ácido Hialurônico/química , Lipídeos/química , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Recidiva Local de Neoplasia , Orlistate/administração & dosagem , Tamanho da Partícula , Polímeros/química , Pró-Fármacos , Neoplasias de Próstata Resistentes à Castração/patologia , Taxoides/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Biomed Pharmacother ; 141: 111830, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34146851

RESUMO

Lung cancer treatment using cisplatin (DDP) in combination with other drugs are effective for the treatment of non-small cell lung cancer (NSCLC). The aim of this study was to prepare a layer-by-layer nanoparticles (NPs) for the co-loading of DDP and oridonin (ORI) and to evaluate the antitumor activity of the system in vitro and in vivo. Novel DDP and ORI co-loaded layer-by-layer NPs (D/O-NPs) were constructed. The mean diameter, surface change stability and drug release behavior of NPs were evaluated. In vitro cytotoxicity of D/O-NPs was investigated against DDP resistant human lung cancer cell line (A549/DDP cells), and in vivo anti-tumor efficiency of D/O-NPs was tested on mice bearing A549/DDP cells xenografts. D/O-NPs have a diameter of 139.6 ± 4.4 nm, a zeta potential value of +13.8 ± 1.6 mV. D/O-NPs could significantly enhance in vitro cell toxicity and in vivo antitumor effect against A549/DDP cells and lung cancer animal model compared to the single drug loaded NPs and free drugs. The results demonstrated that the D/O-NPs could be used as a promising lung cancer treatment system.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células A549 , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos Fitogênicos/administração & dosagem , Cápsulas , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Diterpenos do Tipo Caurano/administração & dosagem , Liberação Controlada de Fármacos , Sinergismo Farmacológico , Humanos , Lipídeos , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Tamanho da Partícula , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Front Plant Sci ; 11: 600820, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304374

RESUMO

The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.

19.
Ital J Pediatr ; 46(1): 113, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32758256

RESUMO

Hepatoblastoma (HB) is the most common malignant liver tumor in children. Abnormal activation of the Wnt/ß-catenin signaling pathway plays an important role in the formation and development of HB. Genes in HB show a global hypomethylation change, accompanied by hypermethylation of specific tumor suppressor genes (TSGs). This article reviews the hypermethylation changes in several TSGs, such as RASSF1A, SOCS1, APC, HHIP, and P16, and analyzes the pathways and mechanisms of TSGs regulating gene expression. The role of the methylation-regulating enzymes DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) family members enzymes in the methylation changes of HB was analyzed, and it was speculated that the occurrence of HB is partly due to the obstruction of liver differentiation in the early stage of differentiation. The origin cells may be incompletely differentiated hepatocytes remaining in the liver of children after birth. Therefore, further studying the role of methylation regulating enzymes in methylation changes in HB is a promising future research direction.


Assuntos
Metilação de DNA , Genes Supressores de Tumor/fisiologia , Hepatoblastoma/etiologia , Hepatoblastoma/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Humanos
20.
J Cancer ; 11(17): 4933-4946, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32742441

RESUMO

Increasing studies on malignant tumors have proposed a new competing endogenous RNA (ceRNA) regulatory mechanism that mRNA, miRNA and lncRNA interact with each other. However, the mRNA-miRNA-lncRNA associated ceRNA network in gastric cancer remains unknown. We used online bioinformatic softwares to predict the hub genes and their upstream miRNAs and lncRNAs in gastric cancer, and then performed survival analyses. After collecting gastric cancer tissue samples and performing PCR experiments, the correlations among predicted mRNA, miRNA and lncRNA were further verified. A total of 101 up-regulated significant differentially expressed genes (DEGs) and 219 down-regulated significant DEGs in gastric cancer were confirmed. Functional enrichment analyses of these significant DEGs indicated that they were potentially enriched in some pathways involved in tumor malignant biological processes or metabolism. Then, we identified 20 hub genes in the PPI networks. Combined with expression and survival analyses, 8 up-regulated genes and 1 down-regulated gene were identified as central genes and acted as important prognostic roles in gastric cancer. 17 miRNAs were confirmed that might potentially regulate the expressions of these central genes. But only 8 out of them indicated better outcome in gastric cancer. Further, 79 lncRNAs were predicted that might have the potence to combine with the 8 central miRNAs. The lncRNA H19 was eventually defined as a central lncRNA by survival analyses. Stimultaneously, we found that there were certain interactions among lncRNA, miRNA and mRNAs in 50 gastric cancer tissues by qRT-PCR. Moreover, the high expression of H19 is associated with advanced TNM stage, primary tumor and lymph nodes, indicating a poor prognosis. In summary, we uncovered the prognostic value of COL3A1/FBN1/COL5A2/SPARC-mir-29a-3p-H19 ceRNA network in gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA