Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
BMC Pulm Med ; 23(1): 258, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452319

RESUMO

BACKGROUND: Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD: In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, ß-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT: PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION: Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.


Assuntos
Asma , Neutrófilos , Animais , Camundongos , Neutrófilos/metabolismo , Aspergillus fumigatus/metabolismo , Adenosina/metabolismo , Asma/terapia , Citocinas/metabolismo , Inflamação , Quimiocinas/metabolismo , Líquido da Lavagem Broncoalveolar , Extratos Vegetais , Remodelação das Vias Aéreas
3.
Cell Immunol ; 364: 104341, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33798909

RESUMO

Asthma is a chronic inflammatory disease of the lungs that poses a considerable health and socioeconomic burden. Several risk factors work synergistically to affect the progression of asthma. Lipid metabolism, especially in distinct cells such as T cells, macrophages, granulocytes, and non-immune cells, plays an essential role in the pathogenesis of asthma, as lipids are potent signaling molecules that regulate a multitude of cellular response. In this review, we focused on the metabolic pathways of lipid molecules, especially fatty acids and their derivatives, and summarized their roles in various cells during the pathogenesis of asthma along with the current pharmacological agents targeting lipid metabolism.


Assuntos
Asma/metabolismo , Granulócitos/imunologia , Metabolismo dos Lipídeos/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia , Animais , Asma/tratamento farmacológico , Asma/epidemiologia , Ácidos Graxos/metabolismo , Humanos , Imunidade Celular , Terapia de Alvo Molecular , Fatores de Risco , Transdução de Sinais
4.
Front Immunol ; 12: 594330, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828547

RESUMO

Cigarette smoke (CS)-induced macrophage activation and airway epithelial injury are both critical for the development of chronic obstructive pulmonary disease (COPD), while the eventual functions of autophagy in these processes remain controversial. We have recently developed a novel COPD mouse model which is based on the autoimmune response sensitized by CS and facilitated by elastin. In the current study, we therefore utilized this model to investigate the roles of autophagy in different stages of the development of bronchitis-like airway inflammation. Autophagic markers were increased in airway epithelium and lung tissues, and Becn+/- or Lc3b-/- mice exhibited reduced neutrophilic airway inflammation and mucus hyperproduction in this COPD mouse model. Moreover, treatment of an autophagic inhibitor 3-methyladenine (3-MA) either during CS-initiated sensitization or during elastin provocation significantly inhibited the bronchitis-like phenotypes in mice. Short CS exposure rapidly induced expression of matrix metallopeptidase 12 (MMP12) in alveolar macrophages, and treatment of doxycycline, a pan metalloproteinase inhibitor, during CS exposure effectively attenuated the ensuing elastin-induced airway inflammation in mice. CS extract triggered MMP12 expression in cultured macrophages, which was attenuated by autophagy impairment (Becn+/- or Lc3b-/-) or inhibition (3-MA or Spautin-1). These data, taken together, demonstrate that autophagy mediates both the CS-initiated MMP12 activation in macrophages and subsequent airway epithelial injury, eventually contributing to development COPD-like airway inflammation. This study reemphasizes that inhibition of autophagy as a novel therapeutic strategy for CS-induced COPD.


Assuntos
Autofagia , Bronquite/etiologia , Bronquite/metabolismo , Elastina/metabolismo , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Biomarcadores , Bronquite/patologia , Linhagem Celular , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Elastina/genética , Expressão Gênica , Humanos , Imuno-Histoquímica , Pulmão/metabolismo , Pulmão/patologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Masculino , Metaloproteinase 12 da Matriz/genética , Metaloproteinase 12 da Matriz/metabolismo , Camundongos
5.
Eur Respir J ; 56(3)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32366484

RESUMO

It is currently not understood whether cigarette smoke exposure facilitates sensitisation to self-antigens and whether ensuing auto-reactive T cells drive chronic obstructive pulmonary disease (COPD)-associated pathologies.To address this question, mice were exposed to cigarette smoke for 2 weeks. Following a 2-week period of rest, mice were challenged intratracheally with elastin for 3 days or 1 month. Rag1-/- , Mmp12-/- , and Il17a-/- mice and neutralising antibodies against active elastin fragments were used for mechanistic investigations. Human GVAPGVGVAPGV/HLA-A*02:01 tetramer was synthesised to assess the presence of elastin-specific T cells in patients with COPD.We observed that 2 weeks of cigarette smoke exposure induced an elastin-specific T cell response that led to neutrophilic airway inflammation and mucus hyperproduction following elastin recall challenge. Repeated elastin challenge for 1 month resulted in airway remodelling, lung function decline and airspace enlargement. Elastin-specific T cell recall responses were dose dependent and memory lasted for over 6 months. Adoptive T cell transfer and studies in T cells deficient Rag1-/- mice conclusively implicated T cells in these processes. Mechanistically, cigarette smoke exposure-induced elastin-specific T cell responses were matrix metalloproteinase (MMP)12-dependent, while the ensuing immune inflammatory processes were interleukin 17A-driven. Anti-elastin antibodies and T cells specific for elastin peptides were increased in patients with COPD.These data demonstrate that MMP12-generated elastin fragments serve as a self-antigen and drive the cigarette smoke-induced autoimmune processes in mice that result in a bronchitis-like phenotype and airspace enlargement. The study provides proof of concept of cigarette smoke-induced autoimmune processes and may serve as a novel mouse model of COPD.


Assuntos
Elastina , Doença Pulmonar Obstrutiva Crônica , Animais , Autoimunidade , Modelos Animais de Doenças , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Fumaça/efeitos adversos , Fumar/efeitos adversos
6.
Autophagy ; 16(3): 435-450, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31203721

RESUMO

Particulate matter (PM) is able to induce airway epithelial injury, while the detailed mechanisms remain unclear. Here we demonstrated that PM exposure inactivated MTOR (mechanistic target of rapamycin kinase), enhanced macroautophagy/autophagy, and impaired lysosomal activity in HBE (human bronchial epithelial) cells and in mouse airway epithelium. Genetic or pharmaceutical inhibition of MTOR significantly enhanced, while inhibition of autophagy attenuated, PM-induced IL6 expression in HBE cells. Consistently, club-cell-specific deletion of Mtor aggravated, whereas loss of Atg5 in bronchial epithelium reduced, PM-induced airway inflammation. Interestingly, the augmented inflammatory responses caused by MTOR deficiency were markedly attenuated by blockage of downstream autophagy both in vitro and in vivo. Mechanistically, the dysregulation of MTOR-autophagy signaling was partially dependent on activation of upstream TSC2, and interacted with the TLR4-MYD88 to orchestrate the downstream NFKB activity and to regulate the production of inflammatory cytokines in airway epithelium. Moreover, inhibition of autophagy reduced the expression of EPS15 and the subsequent endocytosis of PM. Taken together, the present study provides a mechanistic explanation for how airway epithelium localized MTOR-autophagy axis regulates PM-induced airway injury, suggesting that activation of MTOR and/or suppression of autophagy in local airway might be effective therapeutic strategies for PM-related airway disorders.Abbreviations: ACTB: actin beta; AKT: AKT serine/threonine kinase; ALI: air liquid interface; AP2: adaptor related protein complex 2; ATG: autophagy related; BALF: bronchoalveolar lavage fluid; COPD: chronic obstructive pulmonary disease; CXCL: C-X-C motif chemokine ligand; DOX: doxycycline; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; EPS15: epidermal growth factor receptor pathway substrate 15; HBE: human bronchial epithelial; H&E: hematoxylin & eosin; IKK: IKB kinase; IL: interleukin; LAMP2: lysosomal-associated membrane protein 2; LPS: lipopolysaccharide; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MTEC: mouse tracheal epithelial cells; MTOR: mechanistic target of rapamycin kinase; MYD88: MYD88 innate immune signal transduction adaptor; NFKB: nuclear factor of kappa B; NFKBIA: NFKB inhibitor alpha; PM: particulate matter; PtdIns3K: phosphatidylinositol 3-kinase; Rapa: rapamycin; RELA: RELA proto-oncogene, NFKB subunit; SCGB1A1: secretoglobin family 1A member 1; siRNA: small interfering RNAs; SQSTM1: sequestosome 1; TEM: transmission electronic microscopy; TLR4: toll like receptor 4; TSC2: TSC complex subunit 2.


Assuntos
Autofagia , Células Epiteliais/patologia , Material Particulado/toxicidade , Pneumonia/induzido quimicamente , Pneumonia/patologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteína 5 Relacionada à Autofagia/metabolismo , Brônquios/patologia , Linhagem Celular , Citocinas/metabolismo , Endocitose/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Deleção de Genes , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ligação Proteica/efeitos dos fármacos , Proto-Oncogene Mas , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
7.
Medicine (Baltimore) ; 98(25): e16145, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31232969

RESUMO

RATIONALE: Listeria monocytogenes rarely affects immunocompetent adults, and only a few cases of encephalitis caused by L monocytogenes in humans have been reported in China. PATIENT CONCERNS: A 37-year-old male patient presented with headache and fever of 38°C to 39°C for 2 days and dysphoria and dystrophy for 1 day. DIAGNOSIS: The patient was diagnosed as having encephalitis, and his cerebrospinal fluid (CSF) and blood cultures tested positive for L monocytogenes. INTERVENTIONS: The patient was treated with intravenous vancomycin, meropenem, mannitol, methylprednisolone, and enteral nutrition. The computed tomography (CT) scan showed swelling of the brain and hydrocephalus. The patient was treated with emergent surgery, a ventricular drainage tube was inserted, and the CSF was drained daily. OUTCOMES: Despite adequate therapy, the illness was severe and progressed rapidly. The patient died 2 weeks after admission. LESSONS: We report a rare case of L monocytogenes encephalitis in a previously healthy immunocompetent adult in China. The patient's CT scans showed increasing brain swelling and hydrocephalus, and the patient's condition progressively deteriorated.


Assuntos
Encefalite/diagnóstico , Listeriose/diagnóstico , Adulto , Antibacterianos/uso terapêutico , China , Diuréticos Osmóticos/uso terapêutico , Serviço Hospitalar de Emergência/organização & administração , Encefalite/diagnóstico por imagem , Encefalite/etiologia , Humanos , Listeria monocytogenes/patogenicidade , Listeriose/complicações , Listeriose/diagnóstico por imagem , Masculino , Manitol/uso terapêutico , Meropeném/uso terapêutico , Tomografia Computadorizada por Raios X/métodos , Vancomicina/uso terapêutico
9.
Lung Cancer ; 122: 44-53, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30032844

RESUMO

OBJECTIVES: Cigarette smoke (CS) is a major risk factor for the development of lung cancer and chronic obstructive pulmonary disease (COPD). Epithelial-mesenchymal transition (EMT) is found in invasive or metastatic phenotypes in lung cancer and COPD. MK-2206, a pan Akt inhibitor, has failed in clinical trials for solid tumors when administered alone at tolerated doses, but it has been shown to have synergistic effects when applied with certain molecular targeted agents. In this study, we investigated the working mechanism of MK-2206 in CS-induced pulmonary EMT both in vivo and in vitro. MATERIALS AND METHODS: The expression of Akt, epithelial-mesenchymal transition (EMT) markers and signaling proteins were analyzed by immunohistochemistry, real-time PCR and Western blot in cigarette smoke extract (CSE)-treated pulmonary epithelia and CS-treated lung tissues in mice. RESULTS AND CONCLUSION: We demonstrated that exposure of the epithelium to CSE and exposure of the mice to CS can induce EMT by activating the Akt signaling pathway. Intragastric application of MK-2206 at a low dose (50 mg/kg) reversed the changes of the key indicators of EMT in the lungs of CS-exposed mice, including TGF-ß1, α-SMA, vimentin, MMP-9, MMP-2, S100A4, collagen deposition, and E-cadherin. MK-2206 at a non-cytotoxic concentration (0.5 µM) or Akt knockdown consistently reversed the changes of the key indicators of EMT in the pulmonary epithelia. Moreover, we found that the effects of Akt inhibition or knockdown on the CS/CSE-induced EMT acted via the TGF-ß1/Akt/Smad/mTOR and Akt/P38 MAPK pathways. Taken together, our data offer a novel perspective on the molecular mechanism of Akt for CS-induced EMT. This finding may enhance the understanding of the mechanism behind the synergistic use of a low dose of MK-2206 to achieve antitumor efficacy with reduced adverse reactions in patients with lung cancer and COPD.


Assuntos
Neoplasias Pulmonares/metabolismo , Pulmão/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Animais , Células Cultivadas , Fumar Cigarros/efeitos adversos , Transição Epitelial-Mesenquimal , Feminino , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Compostos Heterocíclicos com 3 Anéis/farmacologia , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Transdução de Sinais
10.
J Immunol ; 200(8): 2571-2580, 2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29507104

RESUMO

Airway epithelial cell death and inflammation are pathological features of chronic obstructive pulmonary disease (COPD). Mechanistic target of rapamycin (MTOR) is involved in inflammation and multiple cellular processes, e.g., autophagy and apoptosis, but little is known about its function in COPD pathogenesis. In this article, we illustrate how MTOR regulates cigarette smoke (CS)-induced cell death, airway inflammation, and emphysema. Expression of MTOR was significantly decreased and its suppressive signaling protein, tuberous sclerosis 2 (TSC2), was increased in the airway epithelium of human COPD and in mouse lungs with chronic CS exposure. In human bronchial epithelial cells, CS extract (CSE) activated TSC2, inhibited MTOR, and induced autophagy. The TSC2-MTOR axis orchestrated CSE-induced autophagy, apoptosis, and necroptosis in human bronchial epithelial cells; all of which cooperatively regulated CSE-induced inflammatory cytokines IL-6 and IL-8 through the NF-κB pathway. Mice with a specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly augmented airway inflammation and airspace enlargement in response to CS exposure, accompanied with enhanced levels of autophagy, apoptosis, and necroptosis in the lungs. Taken together, these data demonstrate that MTOR suppresses CS-induced inflammation and emphysema-likely through modulation of autophagy, apoptosis, and necroptosis-and thus suggest that activation of MTOR may represent a novel therapeutic strategy for COPD.


Assuntos
Morte Celular/fisiologia , Células Epiteliais/metabolismo , Inflamação/metabolismo , Nicotiana/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Serina-Treonina Quinases TOR/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Autofagia/efeitos dos fármacos , Autofagia/fisiologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Enfisema Pulmonar/metabolismo , Fumar/efeitos adversos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29445274

RESUMO

Introduction: Bronchial epithelial cell death and airway inflammation induced by cigarette smoke (CS) have been involved in the pathogenesis of COPD. GRP78, belonging to heat shock protein 70 family, has been implicated in cell death and inflammation, while little is known about its roles in COPD. Here, we demonstrate that GRP78 regulates CS-induced necroptosis and injury in bronchial epithelial cells. Materials and methods: GRP78 and necroptosis markers were examined in human bronchial epithelial (HBE) cell line, primary mouse tracheal epithelial cells, and mouse lungs. siRNA targeting GRP78 gene and necroptosis inhibitor were used. Expression of inflammatory cytokines, mucin MUC5AC, and related signaling pathways were detected. Results: Exposure to CS significantly increased the expression of GRP78 and necroptosis markers in HBE cell line, primary mouse tracheal epithelial cells, and mouse lungs. Inhibition of GRP78 significantly suppressed CS extract (CSE)-induced necroptosis. Furthermore, GRP78-necroptosis cooperatively regulated CSE-induced inflammatory cytokines such as interleukin 6 (IL6), IL8, and mucin MUC5AC in HBE cells, likely through the activation of nuclear factor (NF-κB) and activator protein 1 (AP-1) pathways, respectively. Conclusion: Taken together, our results demonstrate that GRP78 promotes CSE-induced inflammatory response and mucus hyperproduction in airway epithelial cells, likely through upregulation of necroptosis and subsequent activation of NF-κB and AP-1 pathways. Thus, inhibition of GRP78 and/or inhibition of necroptosis could be the effective therapeutic approaches for the treatment of COPD.


Assuntos
Apoptose , Brônquios/metabolismo , Células Epiteliais/metabolismo , Proteínas de Choque Térmico/metabolismo , Lesão Pulmonar/metabolismo , Pneumonia/metabolismo , Fumaça/efeitos adversos , Fumar/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular , Citocinas/metabolismo , Modelos Animais de Doenças , Chaperona BiP do Retículo Endoplasmático , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Proteínas de Choque Térmico/genética , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Mediadores da Inflamação/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Lesão Pulmonar/prevenção & controle , Camundongos Endogâmicos C57BL , Mucina-5AC/metabolismo , Muco/metabolismo , NF-kappa B/metabolismo , Necrose , Pneumonia/etiologia , Pneumonia/patologia , Pneumonia/prevenção & controle , Interferência de RNA , Transdução de Sinais , Fatores de Tempo , Fator de Transcrição AP-1/metabolismo , Transfecção
12.
Biochem Biophys Res Commun ; 490(2): 147-154, 2017 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-28602698

RESUMO

Early growth response factor 1 (Egr-1) is a zinc finger transcription factor which responses rapidly to a variety of extracellular stimuli. Previous studies have suggested that Egr-1 exerts pathological functions in chronic obstructive pulmonary disease (COPD) by regulation of cigarette smoking-induced autophagy, cell death, and inflammation. However, little is known about the role of Egr-1 in regulation of mucus production in airway epithelium. In this study, we observed that cigarette smoke extract (CSE) induced a successive expression of Egr-1 and MUC5AC in human bronchial epithelial (HBE) cells. Knockdown of Egr-1 markedly attenuated CSE-induced MUC5AC production, and chromatin immunoprecipitation revealed that Egr-1 transcriptionally bound to MUC5AC promoter upon CSE stimulation. Concurrently, CSE increased the expression of c-Jun and c-Fos, two subunits of activator protein 1 (AP-1) which also critically regulates CSE-induced MUC5AC in HBE cells. CSE also induced a physical interaction of Egr-1 and AP-1, and knockdown of Egr-1 significantly decreased CSE-induced expression of c-Fos and c-Jun. Furthermore, knockdown of c-Fos remarkably attenuated the CSE-induced Egr-1 binding to MUC5AC promoter. These data taken together demonstrate that Egr-1 is essential for CSE-induced MUC5AC production in HBE cells likely through interaction with and modulation of AP-1, and re-emphasize targeting Egr-1 as a novel therapeutic strategy for COPD.


Assuntos
Brônquios/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células Epiteliais/metabolismo , Mucina-5AC/genética , Fumar , Brônquios/patologia , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/isolamento & purificação , Células Epiteliais/patologia , Humanos , Mucina-5AC/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L207-L217, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473329

RESUMO

Pulmonary epithelial cells form the first line of defense of human airways against foreign irritants and also represent as the primary injury target of these pathogenic assaults. Autophagy is a revolutionary conserved ubiquitous process by which cytoplasmic materials are delivered to lysosomes for degradation when facing environmental and/or developmental changes, and emerging evidence suggests that autophagy plays pivotal but controversial roles in pulmonary epithelial injury. Here we review recent studies focusing on the roles of autophagy in regulating airway epithelial injury induced by various stimuli. Articles eligible for this purpose are divided into two groups according to the eventual roles of autophagy, either protective or deleterious. From the evidence summarized in this review, we draw several conclusions as follows: 1) in all cases when autophagy is decreased from its basal level, autophagy is protective; 2) when autophagy is deleterious, it is generally upregulated by stimulation; and 3) a plausible conclusion is that the endosomal/exosomal pathways may be associated with the deleterious function of autophagy in airway epithelial injury, although this needs to be clarified in future investigations.


Assuntos
Autofagia/fisiologia , Células Epiteliais/patologia , Lesão Pulmonar/patologia , Animais , Células Epiteliais/metabolismo , Humanos , Lesão Pulmonar/metabolismo , Lisossomos/metabolismo , Lisossomos/patologia , Transdução de Sinais/fisiologia
14.
J Immunol Res ; 2017: 7915975, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28536707

RESUMO

Chronic obstructive pulmonary disease (COPD) is a major cause of mortality worldwide, which is characterized by chronic bronchitis, destruction of small airways, and enlargement/disorganization of alveoli. It is generally accepted that the neutrophilic airway inflammation observed in the lungs of COPD patients is intrinsically linked to the tissue destruction and alveolar airspace enlargement, leading to disease progression. Animal models play an important role in studying the underlying mechanisms of COPD as they address questions involving integrated whole body responses. This review aims to summarize the current animal models of COPD, focusing on their advantages and disadvantages on immune responses and neutrophilic inflammation. Also, we propose a potential new animal model of COPD, which may mimic the most characteristics of human COPD pathogenesis, including persistent moderate-to-high levels of neutrophilic inflammation.


Assuntos
Modelos Animais de Doenças , Inflamação , Neutrófilos/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Animais , Progressão da Doença , Enfisema/imunologia , Enfisema/fisiopatologia , Humanos , Pulmão/patologia , Camundongos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ratos , Fumar
15.
Toxicol Lett ; 270: 17-24, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28185985

RESUMO

Airway and lung inflammation is a fundamental hallmark of chronic obstructive pulmonary disease (COPD). Activating transcription factor 3 (ATF3) has been reported to negatively regulate many pro-inflammatory cytokines and chemokines. However, little is known about the impact of ATF3 on the inflammatory response of COPD. Since cigarette smoke (CS) is considered to be the most important risk factor in the etiology of COPD, we attempted to investigate the effects and molecular mechanisms of ATF3 in CS-induced inflammation. We observed an increase in the expression of ATF3 in the lung tissues of CS-exposed mice and CS extract (CSE)-treated human bronchial epithelial (HBE) cells. In vitro results indicated that ATF3 inhibition significantly increased the expression of proinflammatory cytokines interleukin 6 (IL6) and interleukin 8 (IL8) in CSE-stimulated HBE cells. Furthermore, in vivo data verified that CS induced inflammatory cell recruitment around the bronchus. In addition, neutrophil infiltration in bronchoalveolar lavage fluid (BALF) of CS-exposed Atf3-/- mice was markedly higher than in stimulated WT mice. Finally, ATF3 deficiency increased the in vitro and in vivo expression and phosphorylation of nuclear factor-κB (NF-κB), a positive mediator of inflammation. Thus, this study shows that ATF3 plays an important role in the negative regulation of CS-induced pro-inflammatory gene expression through downregulating NF-κB phosphorylation.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Fumar/efeitos adversos , Fator 3 Ativador da Transcrição/genética , Animais , Brônquios/citologia , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Líquido da Lavagem Broncoalveolar , Linhagem Celular , Regulação para Baixo , Repressão Epigenética , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Humanos , Inflamação/etiologia , Inflamação/genética , Interleucina-6/genética , Interleucina-8/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/antagonistas & inibidores , NF-kappa B/genética , Infiltração de Neutrófilos/genética , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/isolamento & purificação , Regulação para Cima
16.
J Allergy Clin Immunol ; 140(2): 418-430, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28043871

RESUMO

BACKGROUND: Asthmatic inflammation is dominated by accumulation of either eosinophils, neutrophils, or both in the airways. Disposal of these inflammatory cells is the key to disease control. Eosinophilic airway inflammation is responsive to corticosteroid treatment, whereas neutrophilic inflammation is resistant and increases the burden of global health care. Corticosteroid-resistant neutrophilic asthma remains mechanistically poorly understood and requires novel effective therapeutic strategies. OBJECTIVE: We sought to explore the underlying mechanisms of airway inflammation persistence, as well as corticosteroid resistance, and to investigate a new strategy of effective treatment against corticosteroid-insensitive neutrophilic asthma. METHODS: Mouse models of either eosinophil-dominated or neutrophil-dominated airway inflammation were used in this study to test corticosteroid sensitivity in vivo and in vitro. We also used vav-Bcl-2 transgenic mice to confirm the importance of granulocytes apoptosis in the clearance of airway inflammation. Finally, the Bcl-2 inhibitors ABT-737 or ABT-199 were tested for their therapeutic effects against eosinophilic or neutrophilic airway inflammation and airway hyperresponsiveness. RESULTS: Overexpression of Bcl-2 protein was found to be responsible for persistence of granulocytes in bronchoalveolar lavage fluid after allergic challenge. This was important because allergen-induced airway inflammation aggravated and persisted in vav-Bcl-2 transgenic mice, in which nucleated hematopoietic cells were overexpressed with Bcl-2 and resistant to apoptosis. The Bcl-2 inhibitors ABT-737 or ABT-199 play efficient roles in alleviation of either eosinophilic or corticosteroid-resistant neutrophilic airway inflammation by inducing apoptosis of immune cells, such as eosinophils, neutrophils, TH2 cells, TH17 cells, and dendritic cells. Moreover, these inhibitors were found to be more efficient than steroids to induce granulocyte apoptosis ex vivo from patients with severe asthma. CONCLUSION: Apoptosis of inflammatory cells is essential for clearance of allergen-induced airway inflammation. The Bcl-2 inhibitors ABT-737 or ABT-199 might be promising drugs for the treatment of airway inflammation, especially for corticosteroid-insensitive neutrophilic airway inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Compostos de Bifenilo/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos/imunologia , Compostos de Alúmen , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/imunologia , Asma/metabolismo , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Adjuvante de Freund/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Nitrofenóis/farmacologia , Ovalbumina/imunologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
17.
Am J Pathol ; 187(2): 280-291, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27912076

RESUMO

Mucus hypersecretion is an important pathologic feature of chronic obstructive pulmonary disease. Activating transcription factor 3 (ATF3) is an adaptive-response gene that participates in various cellular processes. However, little is known about its role in cigarette smoke (CS)-induced mucus hyperproduction. This study aimed to investigate the role and molecular mechanisms of ATF3 in CS-induced Mucin 5AC (MUC5AC) expression. ATF3 was elevated in lung tissues of mice exposed to CS for 12 weeks. Treatment with CS extract significantly induced ATF3 expression and MUC5AC production in human bronchial epithelial cells, NCI-H292, and mouse tracheal epithelial cells. Interference of ATF3 significantly attenuated CS-induced MUC5AC expression in NCI-H292 and human bronchial epithelial cells. Mouse tracheal epithelial cells isolated from Atf3-/- mice also exhibited less MUC5AC production in response to CS extract treatment. In vivo, the Atf3-/- mice also displayed a significantly reduced mucus production relative to wild-type controls in response to chronic CS exposure. Furthermore, a chromatin immunoprecipitation assay revealed increased ATF3 binding to the MUC5AC promoter after CS treatment, and this transcriptional binding was significantly inhibited by knockdown of JUN, a subunit of activator protein-1. These results demonstrate that ATF3 may be involved in activator protein-1 signaling and transcriptional promotion of CS-induced MUC5AC expression in airway epithelial cells.


Assuntos
Fator 3 Ativador da Transcrição/metabolismo , Mucina-5AC/biossíntese , Mucosa Respiratória/patologia , Fumar/efeitos adversos , Fator de Transcrição AP-1/metabolismo , Animais , Western Blotting , Imunoprecipitação da Cromatina , Modelos Animais de Doenças , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo
18.
Autophagy ; 12(12): 2286-2299, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27658023

RESUMO

MTOR (mechanistic target of rapamycin [serine/threonine kinase]) plays a crucial role in many major cellular processes including metabolism, proliferation and macroautophagy/autophagy induction, and is also implicated in a growing number of proliferative and metabolic diseases. Both MTOR and autophagy have been suggested to be involved in lung disorders, however, little is known about the role of MTOR and autophagy in pulmonary epithelium in the context of acute lung injury (ALI). In the present study, we observed that lipopolysaccharide (LPS) stimulation induced MTOR phosphorylation and decreased the expression of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 ß)-II, a hallmark of autophagy, in mouse lung epithelium and in human bronchial epithelial (HBE) cells. The activation of MTOR in HBE cells was mediated by TLR4 (toll-like receptor 4) signaling. Genetic knockdown of MTOR or overexpression of autophagy-related proteins significantly attenuated, whereas inhibition of autophagy further augmented, LPS-induced expression of IL6 (interleukin 6) and IL8, through NFKB signaling in HBE cells. Mice with specific knockdown of Mtor in bronchial or alveolar epithelial cells exhibited significantly attenuated airway inflammation, barrier disruption, and lung edema, and displayed prolonged survival in response to LPS exposure. Taken together, our results demonstrate that activation of MTOR in the epithelium promotes LPS-induced ALI, likely through downregulation of autophagy and the subsequent activation of NFKB. Thus, inhibition of MTOR in pulmonary epithelial cells may represent a novel therapeutic strategy for preventing ALI induced by certain bacteria.


Assuntos
Lesão Pulmonar Aguda/enzimologia , Lesão Pulmonar Aguda/patologia , Epitélio/enzimologia , Epitélio/patologia , Pulmão/patologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Autofagia/efeitos dos fármacos , Brônquios/patologia , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Epitélio/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Receptor 4 Toll-Like/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 310(11): L1042-52, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27036871

RESUMO

Mucus hypersecretion is a common pathological feature of chronic airway inflammatory diseases including chronic obstructive pulmonary disease (COPD). However, the molecular basis for this condition remains incompletely understood. We have previously demonstrated a critical role of autophagy in COPD pathogenesis through mediating apoptosis of lung epithelial cells. In this study, we aimed to investigate the function of autophagy as well as its upstream and downstream signals in cigarette smoke-induced mucus production in human bronchial epithelial (HBE) cells and in mouse airways. Cigarette smoke extract (CSE), as well as the classical autophagy inducers starvation or Torin-1, significantly triggered MUC5AC expression, and inhibition of autophagy markedly attenuated CSE-induced mucus production. The CSE-induced autophagy was mediated by mitochondrial reactive oxygen species (mitoROS), which regulated mucin expression through the JNK and activator protein-1 pathway. Epidermal growth factor receptor (EGFR) was also required for CSE-induced MUC5AC in HBE cells, but it exerted inconsiderable effects on the autophagy-JNK signaling cascade. Airways of mice with dysfunctional autophagy-related genes displayed a markedly reduced number of goblet cells and attenuated levels of Muc5ac in response to cigarette smoke exposure. These results altogether suggest that mitoROS-dependent autophagy is essential for cigarette smoke-induced mucus hyperproduction in airway epithelial cells, and reemphasize autophagy inhibition as a novel therapeutic strategy for chronic airway diseases.


Assuntos
Autofagia/efeitos dos fármacos , Mucina-5AC/genética , Mucosa Respiratória/metabolismo , Fumar/metabolismo , Animais , Células Cultivadas , Receptores ErbB/metabolismo , Expressão Gênica , Células Caliciformes , Humanos , Pulmão/metabolismo , Pulmão/patologia , Camundongos Knockout , Mucina-5AC/metabolismo , Muco/metabolismo , Naftiridinas/farmacologia , Mucosa Respiratória/patologia , Transdução de Sinais , Nicotiana/química , Fator de Transcrição AP-1/metabolismo
20.
Sci Rep ; 6: 21515, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26861679

RESUMO

Suhuang antitussive capsule (Suhuang), a traditional Chinese medication, is found effective in treating chronic cough and cough variant asthma (CVA). This study aimed to determine the possible effects and underlying mechanisms of Suhuang on chronic ovalbumin (OVA)-induced airway hyperresponsiveness (AHR), inflammation, and remodeling in mice. Mice were randomly assigned to six experimental groups: control, OVA model with or without Suhuang (low dose: 3.5 g/kg, middle dose: 7.0 g/kg, high dose: 14.0 g/kg), or dexamethasone (2.5 mg/kg). AHR, inflammatory cells, cytokines in bronchoalveolar lavage fluid (BALF), lung pathology, mucus production, and airway remodeling were examined. We found Suhuang treated at lower doses effectively inhibited OVA-induced AHR, airway inflammation, mucus production and collagen deposition around the airway. High dose of Suhuang reduced most of the inflammatory hallmarks while exerted inconsiderable effects on the number of macrophages in BALF and AHR. At all doses, Suhuang significantly reduced the levels of interlukin (IL) -13 and transforming growth factor (TGF)-ß1, but had little effects on IL-4, IL-5, IL-17A and interferon (IFN)-γ. Thus, Suhuang administration alleviates the pathological changes of chronic asthma likely through inhibition of IL-13 and TGF-ß1. Suhuang might be a promising therapy for patients with allergic asthma in the future.


Assuntos
Asma/tratamento farmacológico , Medicina Tradicional Chinesa , Preparações de Plantas/uso terapêutico , Remodelação das Vias Aéreas/efeitos dos fármacos , Animais , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Lamiaceae/metabolismo , Pulmão/patologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Muco/metabolismo , Ovalbumina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA