Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
J Med Chem ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162654

RESUMO

Several FDA-approved adjuvants signal through the NLRP3 inflammasome and IL-1ß release. Identifying small molecules that induce IL-1ß release could allow targeted delivery and structure-function optimization, thereby improving safety and efficacy of next-generation adjuvants. In this work, we leverage our existing high throughput data set to identify small molecules that induce IL-1ß release. We find that ribociclib induces IL-1ß release when coadministered with a TLR4 agonist in an NLRP3- and caspase-dependent fashion. Ribociclib was formulated with a TLR4 agonist into liposomes, which were used as an adjuvant in an ovalbumin prophylactic vaccine model. The liposomes induced antigen-specific immunity in an IL-1 receptor-dependent fashion. Furthermore, the liposomes were coadministered with a tumor antigen and used in a therapeutic cancer vaccine, where they facilitated rejection of E.G7-OVA tumors. While further chemical optimization of the ribociclib scaffold is needed, this study provides proof-of-concept for its use as an IL-1 producing adjuvant in various immunotherapeutic contexts.

2.
Int J Surg ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172728

RESUMO

BACKGROUND: Whether individualized positive end-expiratory pressure (PEEP) improves intraoperative oxygenation and reduces postoperative pulmonary complications (PPCs) remains unclear. This systematic review and meta-analysis examined whether individualized PEEP is associated with improved intraoperative oxygenation and reduce PPCs for patients needing pneumoperitoneum with the Trendelenburg position during surgery. METHODS: Medline, Embase, the Cochrane Library, and www.clinicaltrials.gov were searched for randomized controlled trials evaluating the effects of individualized PEEP on intraoperative oxygenation and PPCs in patients who required Trendelenburg positioning with pneumoperitoneum. The primary outcome was the oxygenation (PaO2/FiO2) during the procedure. Secondary outcomes included PPCs, intraoperative respiratory mechanics (driving pressure, compliance), and vasopressor consumption. DerSimonian-Laird random effects models were used to calculate mean differences (MDs) and log risk ratios (log RRs) with 95% confidence intervals (CIs). The Cochrane Risk-of-Bias tool 2.0 was applied to assess the risk of bias in included studies. The protocol of this meta-analysis has been registered in PROSPERO. RESULTS: We included 14 studies (1121 patients) that employed different individualized PEEP strategies. Compared with control groups, individualized PEEP groups exhibited a significantly improved intraoperative PaO2/FiO2 (MD=56.52 mm Hg, 95% CI: [33.98, 79.06], P<0.001) and reduced incidence of PPCs (log RR=-0.50, 95% CI: [-0.84, -0.16], P=0.004). Individualized PEEP reduced driving pressure while improving respiratory compliance. Intraoperative vasopressor consumption was similar between both groups. The weighted mean PEEP in the individual PEEP groups was 13.2 [95% CI, 11.7, 14.6] cmH2O. No evidence indicated that one individualized PEEP strategy is superior to others. CONCLUSIONS: Individualized PEEP seems to work positively for lung protection in the Trendelenburg position and pneumoperitoneum in patients undergoing general anesthesia.

3.
Clin Med Insights Oncol ; 18: 11795549241252652, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38883848

RESUMO

Background: The overall survival (OS) for patients with recurrent glioma is meager. Also, the effect of radionecrosis and prognostic factors for recurrent glioma remains controversial. In this regard, developing effective predictive models and guiding clinical care is crucial for these patients. Methods: We screened patients with recurrent glioma after radiotherapy and those who received surgery between August 1, 2013, and December 31, 2020. Univariate and multivariate Cox regression analyses determined the independent prognostic factors affecting the prognosis of recurrent glioma. Moreover, nomograms were constructed to predict recurrent glioma risk and prognosis. Statistical methods were used to determine the prediction accuracy and discriminability of the nomogram prediction model based on the area under the curve (AUC), the C-index, the decision curve analysis (DCA), and the calibration curve. In order to distinguish high-risk and low-risk groups for OS, the X-Tile and Kaplan-Meier (K-M) survival curves were employed, and the nomogram prediction model was further validated by the X-Tile and K-M survival curves. Results: According to a Cox regression analysis, independent prognostic factors of recurrent glioma after radiotherapy with radionecrosis were World Health Organization (WHO) grade and gliosis percentage. We utilized a nomogram prediction model to analyze results visually. The C-index was 0.682 (95% CI: 0.616-0.748). According to receiver operating characteristic (ROC) analysis, calibration plots, and DCA, the nomogram prediction model was found to have a high-performance ability, and all patients were divided into low-risk and high-risk groups based on OS (P < .001). Conclusion: WHO grade and gliosis percentage are prognostic factors for recurrent glioma with radionecrosis, and a nomogram prediction model was established based on these two variables. Patients could be divided into high- and low-risk groups with different OS by this model, and it will provide individualized clinical decisions for future treatment.

4.
Carbohydr Polym ; 341: 122345, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38876715

RESUMO

Sulfated fucan from sea cucumber is mainly consists of L-fucose and sulfate groups. Recent studies have confirmed that the structure of sulfated fucan mainly consists of repeating units, typically tetrasaccharides. However, there is growing evidence indicating the presence of irregular domains with heterogeneous units that have not been extensively explored. Moreover, as a key contributor to the nutritional benefits of sea cucumbers, sulfated fucan demonstrates a range of biological activities, such as anti-inflammatory, anticancer, hypolipidemic, anti-hyperglycemic, antioxidant, and anticoagulant properties. These biological activities are profoundly influenced by the structural features of sulfated fucan including molecular weight and distribution patterns of sulfate groups. The latest research indicates that sulfated fucan is dispersed in the extracellular matrix of the body wall of sea cucumbers. This article aimed to review the research progress on the in-situ distribution, structures, structural elucidation strategies, functions, and structure-activity relationships of sulfated fucan, especially in the last decade. It also provided insights into the major challenges and potential solutions in the research and development of sulfated fucan. Moreover, the fucanase and carbohydrate binding modules are anticipated to play pivotal roles in advancing this field.


Assuntos
Polissacarídeos , Pepinos-do-Mar , Pepinos-do-Mar/química , Animais , Polissacarídeos/química , Polissacarídeos/farmacologia , Relação Estrutura-Atividade , Sulfatos/química , Anticoagulantes/química , Anticoagulantes/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia
5.
Sci Bull (Beijing) ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38918142

RESUMO

Fusobacterium nucleatum (F. nucleatum), an oral anaerobe, is prevalent in colorectal cancer and is closely related to increased cancer cell growth, metastasis, and poor treatment outcomes. Bacterial vaccines capable of selectively eliminating bacteria present a promising approach to targeting intratumor F. nucleatum, thereby enhancing cancer treatment. Although adjuvants have been employed to enhance the immune response, the vaccine's effectiveness is constrained by inadequate T-cell activation necessary for eradicating intracellular pathogens. In this study, we developed a minimalistic, biomimetic nanovaccine by integrating highly immunostimulatory adjuvant cholesterol-modified CpG oligonucleotides into the autologously derived F. nucleatum membranes. Compared to the traditional vaccines consisting of inactivated bacteria and Alum adjuvant, the nanovaccine coupled with bacterial membranes and adjuvants could remarkably improve multiple antigens and adjuvant co-delivery to dendritic cells, maximizing their ability to achieve effective antigen presentation and strong downstream immune progress. Notably, the nanovaccine exhibits outstanding selective prophylactic and therapeutic effects, eliminating F. nucleatum without affecting intratumoral and gut microbiota. It significantly enhances chemotherapy efficacy and reduces cancer metastasis in F. nucleatum-infected colorectal cancer. Overall, this work represents the rational application of bacterial nanovaccine and provides a blueprint for future development in enhancing the antitumor effect against bacterial-infected cancer.

6.
Adv Mater ; 36(23): e2314095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38344832

RESUMO

Age-related macular degeneration (AMD) disease has become a worldwide senile disease, and frequent intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the mainstream treatment in the clinic, which is associated with sight-threatening complications. Herein, nintedanib, an inhibitor of angiogenesis, and lutein, a potent antioxidant, can co-assemble into nanoparticles through multiple noncovalent interactions. Interestingly, the co-assembled lutein/nintedanib nanoparticles (L/N NPs) exhibit significantly improved stability and achieve long-term sustained release of two drugs for at least two months in mice. Interestingly, in rabbit eyeball with a more complete barrier system, the L/N NPs still successfully distribute in the retina and choroid for a month. In the laser-induced mouse choroidal neovascularization model, the L/N NPs after a minimally invasive subconjunctival administration can successfully inhibit angiogenesis and achieve comparable and even better therapeutic results to that of standard intravitreal injection of anti-VEGF. Therefore, the subconjunctival injection of L/N NPs with long-term sustained drug release behavior represents a promising and innovative strategy for AMD treatment. Such minimally invasive administration together with the ability to effectively inhibit angiogenesis reduce inflammation and counteract oxidative stress and holds great potential for improving patient outcomes and quality of life in those suffering from this debilitating eye condition.


Assuntos
Neovascularização de Coroide , Preparações de Ação Retardada , Indóis , Nanopartículas , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Nanopartículas/química , Coelhos , Preparações de Ação Retardada/química , Camundongos , Indóis/química , Indóis/uso terapêutico , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Portadores de Fármacos/química , Modelos Animais de Doenças
7.
Int J Gynaecol Obstet ; 164(2): 624-632, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724009

RESUMO

OBJECTIVE: The aim of this study was to investigate the influence of ratio of serum luteinizing hormone (LH) on gonadotropin-releasing hormone antagonist (GnRH-ant) day to basal LH (hLH/bLH) on in-vitro fertilization or intracytoplasmic sperm injection (IVF/ICSI) outcome in polycystic ovary syndrome (PCOS) women who received GnRH-ant protocol for controlled ovarian hyperstimulation (COH). METHODS: This retrospective study was conducted in women with PCOS (n = 1116) who underwent the GnRH-ant protocol for COH between 2015 and 2022 and were stratified as group A (hLH/bLH < 1, n = 489) and group B (hLH/bLH ≥ 1, n = 627) according to the variation of serum LH. The outcomes of COH and the first frozen embryo transfer (FET) cycle were compared between group A, B and the linear relationship between hLH/bLH ratio and IVF/ICSI outcomes were studied by multivariate linear regression analysis and restricted cubic spline (RCS) models. RESULTS: There were significant differences in baseline characteristics and outcomes between group A and B. Group A had higher levels of bLH, AMH, estradiol (E2) on GnRH-ant start day and lower levels of LH on GnRH-ant start day. Group B has better ovulation induction outcomes: more retrieved oocytes, normally fertilized oocytes (2PN), cleavage embryos, available embryos and high-quality blastocysts. Multivariate linear regression analysis found no statistically significant connection between hLH/bLH and clinical outcomes. RCS models showed hLH/bLH had nonlinear association with outcomes, including number of oocytes retrieved, 2PN, available embryos, incidence of OHSS, chemical pregnancy, clinical pregnancy, abortion and live birth. CONCLUSIONS: hLH/bLH ratio could be a more forward-looking indicator of clinical outcome in women with PCOS undergoing GnRH-ant protocols than LH on trigger day and the ratio of LH level on trigger day to basal LH. hLH/bLH = 1 may be the best condition for higher live birth rate and lower OHSS rate.


Assuntos
Aborto Espontâneo , Síndrome de Hiperestimulação Ovariana , Síndrome do Ovário Policístico , Feminino , Humanos , Masculino , Gravidez , Fertilização in vitro/métodos , Hormônio Liberador de Gonadotropina , Hormônio Luteinizante , Síndrome de Hiperestimulação Ovariana/epidemiologia , Síndrome do Ovário Policístico/tratamento farmacológico , Síndrome do Ovário Policístico/complicações , Taxa de Gravidez , Estudos Retrospectivos , Sêmen , Injeções de Esperma Intracitoplásmicas
8.
Sci Adv ; 9(44): eadh1582, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910617

RESUMO

Choroidal melanoma, a common intraocular malignant tumor, relies on local radiotherapy and enucleation for treatment. However, cancer recurrence and visual impairment remain important challenges. Here, a therapeutic artificial vitreous body (AVB) hydrogel based on tetra-armed poly(ethylene glycol) was developed to control the recurrence of choroidal melanoma and preserve vision after vitrectomy. AVB loaded with melphalan (Mel) and anti-programmed cell death ligand-1 (αPDL1), was injected after surgical resection in the choroidal melanoma mouse model. Afterwards, the sequentially released Mel and αPDL1 from AVB could achieve a synergistic antitumor effect to inhibit tumor recurrence. AVB with similar physical properties to native vitreous body could maintain the normal structure and visual function of eye after vitrectomy, which has been evidenced by standard examinations of ophthalmology in the mouse model. Thus, the immunotherapeutic AVB may be a promising candidate as an infill biomaterial to assist surgical treatment of intraocular malignant tumors.


Assuntos
Neoplasias da Coroide , Melanoma , Animais , Camundongos , Corpo Vítreo , Vitrectomia , Hidrogéis , Recidiva Local de Neoplasia/patologia , Melanoma/patologia , Neoplasias da Coroide/cirurgia , Neoplasias da Coroide/patologia , Melfalan , Imunoterapia
9.
Front Oncol ; 13: 1195266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37671064

RESUMO

Adjuvant radiotherapy after breast-conserving surgery has become an integral part of the treatment of breast cancer. In recent years, the development of radiotherapy technology has made great progress in this field, including the comparison of the curative effects of various radiotherapy techniques and the performance of the segmentation times. The choice of radiotherapy technology needs to be co-determined by clinical evidence practice and evaluated for each individual patient to achieve precision radiotherapy. This article discusses the treatment effects of different radiotherapy, techniques, the risk of second cancers and short-range radiation therapy techniques after breast-conserving surgery such as hypo fractionated whole breast irradiation and accelerated partial breast irradiation. The choice of radiotherapy regimen needs to be based on the individual condition of the patient, and the general principle is to focus on the target area and reduce the irradiation of the normal tissues and organs. Short-range radiotherapy and hypofractionated are superior to conventional radiotherapy and are expected to become the mainstream treatment after breast-conserving surgery.

10.
Adv Mater ; 35(45): e2306281, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722134

RESUMO

Clinical evidence indicates that tumor-colonizing bacteria can be closely related to the tumor development and therapeutic responses. Selectively eliminating bacteria within tumors may be an attractive approach to enhance cancer treatment without additional side effects. Herein, it is found that, owing to the high affinity between the membrane protein Fap-2 on Fusobacterium nucleatum and d-galactose-ß (1-3)-N-acetyl-d-galactosamine (Gal-GalNAc) overexpressed on colorectal tumor cells, F. nucleatum can colonize in colorectal tumors, as evidenced by both clinical samples and animal tumor models. Notably, F. nucleatum colonized in colorectal tumors can lead to an immunosuppressive tumor microenvironment, greatly reducing their responses to immune checkpoint blockade (ICB) therapy. Inspired by this finding, an F. nucleatum-mimetic nanomedicine is designed by fusing F. nucleatum cytoplasmic membrane (FM) with Colistin-loaded liposomes to achieve selective killing of tumor-colonizing F. nucleatum without affecting gut microbes. As a result, the therapeutic responses of F. nucleatum-colonized tumors to ICB therapies can be successfully restored, as demonstrated in an F. nucleatum-infected subcutaneous CT-26 tumor model, chemically induced spontaneous colorectal cancer models, and MC-38 tumor model. In summary, this work presents an F. nucleatum-mimicking nanomedicine that can selectively eliminate tumor-colonized bacteria, which is promising for enhancing the responses of cancer immunotherapy against F. nucleatum-colonized colorectal cancer.


Assuntos
Neoplasias Colorretais , Fusobacterium nucleatum , Animais , Nanomedicina , Neoplasias Colorretais/tratamento farmacológico , Antibacterianos , Imunoterapia , Microambiente Tumoral
11.
J Control Release ; 363: 43-56, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37734673

RESUMO

The gut microbiota is closely associated with the progression of colorectal cancer (CRC) in which Fusobacterium nucleatum (F. nucleatum) was found to induce cancer resistance to chemotherapeutics. To relieve F. nucleatum-induced drug resistance, herein, we found that short-chain fatty acid butyrate can inhibit the growth, enrichment and adhesion of F. nucleatum in colorectal cancer tissues by downregulating the expression of adhesion-associated outer membrane proteins, including RadD, FomA, and FadA, to reduce the colonization and invasion of F. nucleatum and relieve the chemoresistance induced by F. nucleatum. Leveraging the killing effect of butyrate on F. nucleatum, sodium butyrate (NaBu) was encapsulated in liposomes or prepared as NaBu tablets with Eudragit S100 coating and administered by intravenous injection or oral administration, respectively. Interestingly, both intravenous administration of NaBu liposomes and oral delivery of NaBu tablets could effectively inhibit the proliferation of F. nucleatum and significantly improve the therapeutic efficacy of oxaliplatin in mice with subcutaneous colorectal tumors, orthotopic colorectal tumors and even spontaneously formed colorectal tumors. Thus, our work provides a simple but effective formulation of NaBu to relieve F. nucleatum-induced chemoresistance, exhibiting ideal clinical application prospects.


Assuntos
Neoplasias Colorretais , Infecções por Fusobacterium , Animais , Camundongos , Fusobacterium nucleatum/metabolismo , Butiratos , Resistencia a Medicamentos Antineoplásicos , Lipossomos/metabolismo , Infecções por Fusobacterium/complicações , Infecções por Fusobacterium/metabolismo , Infecções por Fusobacterium/microbiologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo
12.
Nanoscale ; 15(26): 11280-11289, 2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37350173

RESUMO

Protein therapy, an innovative therapeutic strategy, has been extensively used in the treatment of cancer in recent years. However, the sequential delivery of multiple proteins acting separately intracellular and extracellular to their sites of action remains a challenge. Here, we construct a nanosystem (PEI-PEG-TRAIL@IONP-GOx) to sequentially release tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) extracellularly and glucose oxidase (GOx) intracellularly for synergistic cancer treatment. The nanosystem is built as a core-shell structure. The core is a pH responsive nanoassembly of boronic acid modified iron oxide nanoparticles (FPBA-IONPs) and polyphenol decorated GOx. The shell is a PEGylated polyethyleneimine (PEI-PEG) polymer on which TRAIL was coupled by a matrix metalloproteinase-2 (MMP-2) responsive peptide. Once the nanosystems were magnetically guided to the tumor site, TRAIL was quickly released by the extracellular MMP-2 to induce tumor apoptosis and enhanced the cellular uptake of the cores. After cytosolic delivery, FPBA-IONPs and GOx were disassembled intracellularly to trigger a cascade reaction to generate free radicals for tumor inhibition. Both in vitro and in vivo experiments proved the separate delivery of TRAIL and GOx and their remarkable synergistic anti-cancer effect. We believe that this nanosystem can offer a new approach for the multistage delivery of proteins and accomplish the objective of protein cooperation for cancer treatment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Metaloproteinase 2 da Matriz , Neoplasias/tratamento farmacológico , Polímeros , Peptídeos , Fenômenos Magnéticos , Linhagem Celular Tumoral , Nanopartículas/química
13.
Inflammation ; 46(5): 1749-1763, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37212951

RESUMO

As a lethal infectious disease, tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb). Its complex pathophysiological process limits the effectiveness of many clinical treatments. By regulating host cell death, Mtb manipulates macrophages, the first line of defense against invading pathogens, to evade host immunity and promote the spread of bacteria and intracellular inflammatory substances to neighboring cells, resulting in widespread chronic inflammation and persistent lung damage. Autophagy, a metabolic pathway by which cells protect themselves, has been shown to fight intracellular microorganisms, such as Mtb, and they also play a crucial role in regulating cell survival and death. Therefore, host-directed therapy (HDT) based on antimicrobial and anti-inflammatory interventions is a pivotal adjunct to current TB treatment, enhancing anti-TB efficacy. In the present study, we showed that a secondary plant metabolite, ursolic acid (UA), inhibited Mtb-induced pyroptosis and necroptosis of macrophages. In addition, UA induced macrophage autophagy and enhanced intracellular killing of Mtb. To investigate the underlying molecular mechanisms, we explored the signaling pathways associated with autophagy as well as cell death. The results showed that UA could synergistically inhibit the Akt/mTOR and TNF-α/TNFR1 signaling pathways and promote autophagy, thus achieving its regulatory effects on pyroptosis and necroptosis of macrophages. Collectively, UA could be a potential adjuvant drug for host-targeted anti-TB therapy, as it could effectively inhibit pyroptosis and necroptosis of macrophages and counteract the excessive inflammatory response caused by Mtb-infected macrophages via modulating the host immune response, potentially improving clinical outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Ácido Ursólico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Piroptose , Necroptose , Macrófagos/metabolismo , Tuberculose/metabolismo , Transdução de Sinais , Autofagia , Serina-Treonina Quinases TOR/metabolismo
14.
Adv Mater ; 35(29): e2302220, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178454

RESUMO

Radiotherapy (RT) is an extensively used strategy for cancer treatment, but its therapeutic effect is usually limited by the abnormal tumor microenvironment (TME) and it lacks the ability to control tumor metastases. In this work, a nanoscale coordination polymer, Hf-nIm@PEG (HNP), is prepared by the coordination of hafnium ions (Hf4+ ) with 2-nitroimidazole (2-nIm), and then modified with lipid bilayers containing poly(ethylene glycol) (PEG). Under low-dose X-ray irradiation, on the one hand, Hf4+ with high computed tomography signal enhancement ability can deposit radiation energy to induce DNA damage, and on the other hand, NO can be persistently released from 2-nIm, which can not only directly react with the radical DNA to prevent the repair of damaged DNA but also relieves the hypoxic immunosuppressive TME to sensitize radiotherapy. Additionally, NO can also react with superoxide ions to generate reactive nitrogen species (RNS) to induce cell apoptosis. More interestingly, it is discovered that Hf4+ can effectively activate the cyclic-di-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to promote the immune responses induced by radiotherapy. Thus, this work presents a simple but multifunctional nanoscale coordination polymer to deposit radiation energy, trigger the release of NO, modulate the TME, activate the cGAS-STING pathway, and finally realize synergistic radio-immunotherapy.


Assuntos
Neoplasias , Óxido Nítrico , Humanos , Raios X , Háfnio , Nucleotidiltransferases , Imunoterapia , Microambiente Tumoral , Neoplasias/radioterapia
15.
Microbiol Spectr ; 11(3): e0471122, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125940

RESUMO

Mycobacterium tuberculosis (Mtb) continues to pose a significant threat to global health because it causes granulomas and systemic inflammatory responses during active tuberculosis (TB). Mtb can induce macrophage pyroptosis, which results in the release of IL-1ß and causes tissue damage, thereby promoting its spread. In the absence of anti-TB drugs, host-directed therapy (HDT) has been demonstrated to be an effective strategy against TB. In this study, we used an in vitro Mtb-infected macrophage model to assess the effect of baicalein, derived from Scutellariae radix, on pyroptosis induced in Mtb-infected macrophages. Further, we investigated the molecular mechanisms underlying the actions of baicalein. The results of the study suggest that baicalein inhibits pyroptosis in Mtb-infected macrophages by downregulating the assembly of AIM2 and NLRP3 inflammasome and promoting autophagy. Further research has also shown that the mechanism by which baicalein promotes autophagy may involve the inhibition of the activation of the Akt/mTOR pathway and the inhibition of the AIM2 protein, which affects the levels of CHMP2A protein required to promote autophagy. Thus, our data show that baicalein can inhibit Mtb infection-induced macrophage pyroptosis and has the potential to be a new adjunctive HDT drug. IMPORTANCE Current strategies for treating drug-resistant tuberculosis have limited efficacy and undesirable side effects; hence, research on new treatments, including innovative medications, is required. Host-directed therapy (HDT) has emerged as a viable strategy for modulating host cell responses in order to enhance protective immunity against infections. Baicalein, extracted from Scutellariae radix, was shown to inhibit pyroptosis caused by Mycobacterium tuberculosis-infected macrophages and was associated with autophagy. Our findings reveal that baicalein can be used as an adjunctive treatment for tuberculosis or other inflammatory diseases by regulating immune function and enhancing the antibacterial ability of the host. It also provides a new idea for exploring the anti-inflammatory mechanism of baicalein.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Piroptose , Macrófagos , Autofagia , Proteínas de Ligação a DNA/metabolismo
16.
Biomaterials ; 296: 122062, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863071

RESUMO

Neoantigen cancer vaccines that target tumor specific mutations are emerging as a promising modality for cancer immunotherapy. To date, various approaches have been adopted to enhance efficacy of these therapies, but the low immunogenicity of neoantigens has hindered clinical application. To address this challenge, we developed a polymeric nanovaccine platform that activates the NLRP3 inflammasome, a key immunological signaling pathway in pathogen recognition and clearance. The nanovaccine is comprised of a poly (orthoester) scaffold engrafted with a small-molecule TLR7/8 agonist and an endosomal escape peptide that facilitates lysosomal rupture and NLRP3 inflammasome activation. Upon solvent transfer, the polymer self-assembles with neoantigens to form ∼50 nm nanoparticles that facilitate co-delivery to antigen-presenting cells. This polymeric activator of the inflammasome (PAI) was found to induce potent antigen-specific CD8+ T cell responses characterized by IFN-γ and GranzymeB secretion. Moreover, in combination with immune checkpoint blockade therapy, the nanovaccine stimulated robust anti-tumor immune responses against established tumors in EG.7-OVA, B16·F10, and CT-26 models. Results from our studies indicate that NLRP3 inflammasome activating nanovaccines demonstrate promise for development as a robust platform to enhance immunogenicity of neoantigen therapies.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Adjuvantes Imunológicos/metabolismo , Imunoterapia/métodos , Nanopartículas/química
17.
Biotechnol Genet Eng Rev ; : 1-16, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36971139

RESUMO

WDFY2 is a protein that may provide valuable insights into the mechanisms underlying human tumors and aid in the development of novel therapies. Despite its potential importance, the role of WDFY2 in pan-cancer has not been systematically investigated. In this study, we comprehensively explored the expression pattern and function of WDFY2 across 33 cancers using various databases, including TCGA, CPTAC and GEO datasets. Our results indicate that WDFY2 is downregulated in most cancer types, including BRCA, KIRP, KICH, LUAD, KIRC, PCPG, PRAD, THCA, ACC, OV, TGCT and UCS, while it is upregulated in CESC, CHOL, COAD, HNSC, LUSC, READ, STAD and UCEC. Prognostic analyses showed that higher levels of WDFY2 were associated with worse disease outcomes in ACC, BLCA, COAD, READ, SARC, MESO and OV. WDFY2 mutations were most frequent in colorectal cancer but were not associated with disease prognosis. We also found that WDFY2 expression correlated with monocyte infiltration status in SKCM, endothelial cell infiltration in COAD, KIRC, MESO, OV and THCA, and cancer-associated fibroblast infiltration in COAD, LUAD and OV. Additionally, functional enrichment analysis revealed that WDFY2 is involved in metabolism. Overall, our comprehensive analysis sheds light on the role of WDFY2 in various cancers, providing a better understanding of its role in tumorigenesis.

18.
Oncol Lett ; 25(3): 110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36817059

RESUMO

Postoperative adjuvant radiotherapy plays an important role in the treatment of patients with breast cancer. With the continuous development of radiotherapeutic technologies, the requirements for radiotherapeutic accuracy are increasingly high. The accuracy of target volume and organ at risk delineation significantly affects the effect of radiotherapy. Automatic delineation software has been continuously developed for the automatic delineation of target areas and organs at risk. Automatic segmentation based on an atlas and deep learning is a hot topic in current clinical research. Automatic delineation can not only reduce the workload and delineation times, but also establish a uniform delineation standard and reduce inter-observer and intra-observer differences. In patients with breast cancer, especially in patients who undergo left breast radiotherapy, the protection of the heart is particularly important. Treating the whole heart as an organ at risk cannot meet the clinical needs, and it is necessary to limit the dose to specific cardiac substructures. The present review discusses the importance of automatic delineation of target volume and cardiac substructure in radiotherapy for patients with breast cancer.

19.
Comput Math Methods Med ; 2023: 1553408, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36756387

RESUMO

Purpose: Gliosarcoma is a histopathological variant of glioblastoma, which is characterized by a biphasic growth pattern consisting of glial and sarcoma components. Owing to its scarcity, data regarding the impact of available treatments on the clinical outcomes of gliosarcoma are inadequate. The purpose of this retrospective cohort study was to analyze the prognostic factors of gliosarcoma. Methods: By screening the clinical database of neurosurgical cases at a single center, patients with gliosarcoma diagnosed histologically from 2013 to 2021 were identified. Clinical, pathological, and molecular data were gathered founded on medical records and follow-up interviews. Prognostic factors were derived using the Cox proportional hazards model with backward stepwise regression analysis. Results: Forty-five GSM patients were included. Median overall survival was 25.6 months (95% CI 8.0-43.1), and median relapse-free survival was 15.2 months (95% CI 9.7-20.8). In multivariable analysis, total resection (p = 0.023, HR = 0.192, 95% CI 0.046-0.797) indicated an improved prognosis. And low expression of Ki-67 (p = 0.059, HR = 2.803, 95% CI 0.963-8.162) would be likely to show statistical significance. However, there might be no statistically significant survival benefit from radiotherapy with concurrent temozolomide (n = 33, 73.3%, log-rank p = 0.99) or adjuvant temozolomide (n = 32, 71.1%, log-rank p = 0.74). Conclusion: This single-center retrospective study with a limited cohort size has demonstrated the treatment of gross total resection and low expression of Ki-67 which are beneficial for patients with GSM, while radiotherapy or temozolomide is not.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Gliossarcoma , Humanos , Temozolomida , Gliossarcoma/diagnóstico , Gliossarcoma/terapia , Gliossarcoma/patologia , Estudos Retrospectivos , Prognóstico , Antígeno Ki-67 , Neoplasias Encefálicas/patologia , Recidiva Local de Neoplasia , Glioblastoma/patologia
20.
ACS Nano ; 17(5): 4373-4386, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36802527

RESUMO

Therapeutic proteins are playing increasingly important roles in treating numerous types of diseases. However, oral administration of proteins, especially large ones (e.g., antibodies), remains a great challenge due to their difficulties in penetrating intestinal barriers. Herein, fluorocarbon-modified chitosan (FCS) is developed for efficient oral delivery of different therapeutic proteins, in particular large ones such as immune checkpoint blockade antibodies. In our design, therapeutic proteins are mixed with FCS to form nanoparticles, lyophilized with appropriate excipients, and then filled into enteric capsules for oral administration. It has been found that FCS could promote transmucosal delivery of its cargo protein via inducing transitory rearrangement of tight junction associated proteins between intestinal epithelial cells and subsequently release free proteins into blood circulation. It is shown that at a 5-fold dose oral delivery of anti-programmed cell death protein-1 (αPD1) or its combination with anti-cytotoxic T-lymphocyte antigen 4 (αCTLA4) using this method could achieve comparable antitumor therapeutic responses to that achieved by intravenous injection of corresponding free antibodies in various types of tumor models and, more excitingly, result in significantly reduced immune-related adverse events. Our work successfully demonstrates the enhanced oral delivery of antibody drugs to achieve systemic therapeutic responses and may revolutionize the future clinical usage of protein therapeutics.


Assuntos
Excipientes , Nanopartículas , Anticorpos , Polímeros , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA