Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Front Pharmacol ; 15: 1345070, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38799165

RESUMO

Background: Vandetanib is a small-molecule tyrosine kinase inhibitor. It exerts its therapeutic effects primarily in a range of lung cancers by inhibiting the vascular endothelial growth factor receptor 2. However, it remains unclear whether vandetanib has therapeutic benefits in other lung diseases, particularly asthma. The present study investigated the pioneering use of vandetanib in the treatment of asthma. Methods: In vivo experiments including establishment of an asthma model, measurement of airway resistance measurement and histological analysis were used primarily to confirm the anticontractile and anti-inflammatory effects of vandetanib, while in vitro experiments, including measurement of muscle tension and whole-cell patch-clamp recording, were used to explore the underlying molecular mechanism. Results: In vivo experiments in an asthmatic mouse model showed that vandetanib could significantly alleviate systemic inflammation and a range of airway pathological changes including hypersensitivity, hypersecretion and remodeling. Subsequent in vitro experiments showed that vandetanib was able to relax the precontracted rings of the mouse trachea via calcium mobilization which was regulated by specific ion channels including VDLCC, NSCC, NCX and K+ channels. Conclusions: Taken together, our study demonstrated that vandetanib has both anticontractile and anti-inflammatory properties in the treatment of asthma, which also suggests the feasibility of using vandetanib in the treatment of asthma by reducing abnormal airway contraction and systemic inflammation.

2.
Arch Med Sci ; 20(2): 375-383, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38757018

RESUMO

Introduction: The aim of the study was to evaluate the risk factors for cervical instability in rheumatoid arthritis (RA). Material and methods: Computer searches were conducted in PubMed, Embase, Cochrane Library, the China National Knowledge Infrastructure (CNKI) database, the Wan Fang database, the Chinese Scientific Journal Databases (VIP) database, and the Chinese Biomedical Literature database (CBM) from their establishment until November 2022. Results: A total of 8 articles were included in this study, including 1 cross-sectional study, 5 case-control studies, and 2 cohort study, including 3078 patients with RA. Meta-analysis results showed that: male sex (OR = 1.70, 95% CI: 1.19-2.42), course of disease (OR = 1.72, 95% CI: 1.29-2.28), long-term glucocorticosteroid use (OR = 2.84, 95% CI: 1.97-2.40), Steinbrocker staging (OR = 2.30, 95% CI: 1.61-3.28), disability at baseline (OR = 24.57, 95% CI: 5.51-109.60), peripheral joint destruction (OR = 2.24, 95% CI: 1.56-3.21), Steinbrocker stage I-IV progression to disability (OR = 20.08, 95% CI: 4.18-96.53), and previous joint surgery (OR = 1.54, 95% CI: 1.06-2.26) are the main risk factors for cervical instability in RA. Conclusions: There are many risk factors for cervical instability in RA. In clinical practice, special attention should be paid to patients who are male, have a longer course of disease, have long-term glucocorticosteroid use, have previous joint surgery, have peripheral joint damage, and develop disability in Steinbrocker stage I-IV. Attention should be paid to the high-risk groups mentioned above, and effective measures such as early screening and full monitoring should be taken to prevent the occurrence of cervical instability in RA.

3.
Mol Med ; 29(1): 154, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37936054

RESUMO

BACKGROUND: Tyrosine kinase and phosphoinositide kinase pathways play important roles in asthma formation. As a dual tyrosine and phosphoinositide kinase inhibitor, PP121 has shown anticancer efficacy in multiple tumors. However, the study of PP121 in pulmonary diseases is still limited. Herein, we investigated the therapeutic activities of PP121 in asthma treatment. METHODS: Tension measurements and patch clamp recordings were made to investigate the anticontractile characteristics of PP121 in vitro. Then, an asthma mouse model was established to further explore the therapeutic characteristics of PP121 via measurement of respiratory system resistance, histological analysis and western blotting. RESULTS: We discovered that PP121 could relax precontracted mouse tracheal rings (mTRs) by blocking certain ion channels, including L-type voltage-dependent Ca2+ channels (L-VDCCs), nonselective cation channels (NSCCs), transient receptor potential channels (TRPCs), Na+/Ca2+ exchangers (NCXs) and K+ channels, and accelerating calcium mobilization. Furthermore, PP121 relieved asthmatic pathological features, including airway hyperresponsiveness, systematic inflammation and mucus secretion, via downregulation of inflammatory factors, mucins and the mitogen-activated protein kinase (MAPK)/Akt signaling pathway in asthmatic mice. CONCLUSION: In summary, PP121 exerts dual anti-contractile and anti-inflammatory effects in asthma treatment, which suggests that PP121 might be a promising therapeutic compound and shed new light on asthma therapy.


Assuntos
Asma , Hipersensibilidade Respiratória , Animais , Camundongos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Asma/tratamento farmacológico , Hipersensibilidade Respiratória/metabolismo , Inflamação/metabolismo , Muco/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C , Ovalbumina
4.
Inflammation ; 46(6): 2449-2469, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37644164

RESUMO

Asthma is an inflammatory disease characterized by airway hyperresponsiveness, airway remodeling, and airway inflammation. In recent years, the prevalence of asthma has been increasing steadily and the pathogenesis of asthma varies from person to person. Due to poor compliance or resistance, existing drugs cannot achieve the desired therapeutic effect. Therefore, developing or screening asthma therapeutic drugs with high curative effects, low toxicity, and strong specificity is very urgent. Duloxetine HCl (DUX) is a selective serotonin and norepinephrine reuptake inhibitor, and it was mainly used to treat depression, osteoarthritis, and neuropathic pain. It was also reported that DUX has potential anti-infection, anti-inflammation, analgesic, antioxidative, and other pharmacological effects. However, whether DUX has some effects on asthma remains unknown. In order to investigate it, a series of ex vivo and in vivo experiments, including biological tension tests, patch clamp, histopathological analysis, lung function detection, oxidative stress enzyme activity detection, and molecular biology experiments, were designed in this study. We found that DUX can not only relax high potassium or ACh precontracted tracheal smooth muscle by regulating L-type voltage-dependent Ca2+ channel (L-VDCC) and nonselective cation channel (NSCC) ion channels but also alleviate asthma symptoms through anti-inflammatory and antioxidative response regulated by PI3K/AKT/mTOR and Nrf2/HO-1 signaling pathways. Our data suggests that DUX is expected to become a potential new drug for relieving or treating asthma.


Assuntos
Asma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cloridrato de Duloxetina/farmacologia , Cloridrato de Duloxetina/uso terapêutico , Fator 2 Relacionado a NF-E2/metabolismo , Asma/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Anti-Inflamatórios/farmacologia
5.
Medicine (Baltimore) ; 100(34): e26986, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34449468

RESUMO

BACKGROUND: Maternal tobacco exposure during pregnancy is known to cause a potential hazard to the offspring's health. So far, published studies have shown no consistent results with whether tobacco exposure in utero is causally linked to the development of allergic rhinitis in offspring. The aim of this study was to comprehensively evaluate the association between maternal tobacco exposure during pregnancy and allergic rhinitis in offspring by meta-analysis and to provide reference for clinical work. METHODS: Literatures were searched in CNKI, Wanfang Data, VIP, SinoMed, PubMed, Web of science and Embase up to September 30,2020. Screening, inclusion, quality assessment, data extraction and data analysis of the literatures were conducted. Meta-analysis was performed with Revman 5.3 and State15.1 software. Odds ratio (OR) and 95%CI were used as observation indicators. RESULTS: We had retrieved 16 articles with 22 independent datasets and 11,49,879 sample size. When all the studies were analyzed together, the results showed that maternal smoking exposure during pregnancy would increase the risk of allergic rhinitis in offspring (OR = 1.13, 95%CI:1.02-1.26), especially maternal passive smoking during pregnancy (OR = 1.39, 95%CI:1.05-1.84). But subgroup analysis showed that maternal active smoking during pregnancy was only significantly associated with offspring allergic rhinitis in cross-sectional studies (OR = 1.24, 95%CI:1.07-1.45) and study done in America study (OR = 1.22, 95%CI:1.05-1.42). CONCLUSIONS: Tobacco exposure during pregnancy could increase the risk of allergic rhinitis in offspring. The importance of avoiding prenatal tobacco exposure should be emphasized more for the health of next generation in the public.


Assuntos
Exposição Materna/efeitos adversos , Rinite Alérgica/epidemiologia , Poluição por Fumaça de Tabaco/efeitos adversos , Estudos Transversais , Feminino , Humanos , Razão de Chances , Gravidez , Efeitos Tardios da Exposição Pré-Natal
6.
Sheng Li Xue Bao ; 73(3): 482-490, 2021 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-34230949

RESUMO

S100 calcium binding protein A9 (S100A9) is involved in a variety of biological processes such as inflammation and tumor cell migration and invasion regulation. The purpose of this study was to construct S100A9 gene-edited mice by using CRISPR/Cas9 technology, thereby providing an animal model for exploring the biological functions of this gene. According to the S100A9 gene sequence, the single-stranded small guide RNA (sgRNA) targeting exons 2 and 3 was transcribed in vitro, and a mixture of Cas9 mRNA and candidate sgRNA was injected into mouse fertilized eggs by microinjection. Early embryos were obtained and transferred to surrogate mice, and F0 mice were obtained and identified by PCR identification and gene sequencing. F0 mice were further mated with wild-type C57BL/6 mice to obtain F1 heterozygous mice, and then homozygous offspring were obtained through F1 mice self-crossing. Real-time PCR, Western blot and immunohistochemistry (IHC) were used to verify the expression and distribution of S100A9. In order to observe the pathological changes of mouse lung tissue using HE staining, an allergic asthma model was induced by ovalbumin from chicken egg white (OVA). The results showed that the 2 492 bp of exons 2, 3 of the S100A9 gene was successfully knocked out, and S100A9-/- mice with stable inheritance were obtained. Furthermore, it was found that S100A9 gene was highly expressed in the lung and spleen of wild-type mice. The expression of S100A9 mRNA and protein was not detected in the lung and spleen of S100A9-/- mice. However, compared with wild-type mice, the lungs of S100A9-/- mice showed a significantly worse inflammatory phenotype, and the proportion of eosinophils in bronchoalveolar lavage fluid (BALF) was significantly increased in response to the treatment of OVA. These results suggest we have successfully constructed a new strain of S100A9-/- mice, and preliminarily confirmed that the lack of S100A9 function can aggravate airway inflammation in asthmatic mice, providing a new mouse model for further study of S100A9 gene function.


Assuntos
Marcação de Genes , Animais , Líquido da Lavagem Broncoalveolar , Sistemas CRISPR-Cas/genética , Calgranulina B , Modelos Animais de Doenças , Técnicas de Inativação de Genes , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ovalbumina , Fenótipo
7.
Front Oncol ; 11: 628480, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34123785

RESUMO

Placenta-specific protein 9 (PLAC9) is a putative secretory protein that was initially identified in the placenta and is involved in cell proliferation and motility. Bioinformatics analyses revealed that PLAC9 is repressed in lung cancers (LCs), especially lung adenocarcinomas, compared to that in the paired adjacent normal tissues, indicating that PLAC9 might be involved in the pathogenesis of pulmonary diseases. To investigate the potential role of PLAC9 in the abnormal reprogramming of airway epithelial cells (AECs), a key cause of pulmonary diseases, we constructed a stable PLAC9-overexpressing human bronchial epithelial cell line (16HBE-GFP-Plac9). We utilized the proteomic approach isobaric tag for relative and absolute quantification (iTRAQ) to analyze the effect of PLAC9 on cellular protein composition. Gene ontology (GO) and pathway analyses revealed that GO terms and pathways associated with cell proliferation, cell cycle progression, and cell motility and migration were significantly enriched among the proteins regulated by PLAC9. Our in vitro results showed that PLAC9 overexpression reduced cell proliferation, altered cell cycle progression, and increased cell motility, including migration and invasion. Our findings suggest that PLAC9 inhibits cell proliferation through S phase arrest by altering the expression levels of cyclin/cyclin-dependent kinases (CDKs) and promotes cell motility, likely via the concerted actions of cyclins, E-cadherin, and vimentin. Since these mechanisms may underlie PLAC9-mediated abnormal human bronchial pathogenesis, our study provides a basis for the development of molecular targeted treatments for LCs.

8.
Cell Biochem Biophys ; 78(1): 55-64, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31696435

RESUMO

Candidate oncogene placenta specific 8 (PLAC8) has been identified to participate in different cellular process and human diseases. However, the effects of PLAC8 on cell proliferation and migration in human kidney cancer (KC) remained unclear. In current study, physiological effects of PLAC8 in immortalized human embryonic kidney cell line (HEK293T) were investigated in vitro. Two PLAC8 knockout (KO) cell lines were established via CRISPR/Cas9-mediated methods combined with fluorescence activated single cell sorting. To classify the characteristic of PLAC8 during cell proliferation and migration in HEK293T, cellular proliferative activity was analyzed by cell counting and colony formation assay. Cell cycle distribution was analyzed by flow cytometry. Cellular motile activity was analyzed by wound-healing and migration assay. Further underlying molecular mechanism was explored via western blot. With the KO cell lines, it was found that PLAC8 KO could decrease cell proliferation. Moreover, the inhibitory effects of PLAC8 KO on cell proliferation were associated with a G2/M arrest in cell cycle progression concomitant with a remarkable inhibition of Cyclin B1 and elevation of Cyclin A. The alteration of cell cycle proteins and E-cadherin might further associate with the enhancement of cell motility. Our study revealed a novel role for PLAC8 in cell proliferation and migration of HEK293T cells, which might shed light on further study of PLAC8 on human KC.


Assuntos
Proliferação de Células , Proteínas/genética , Sistemas CRISPR-Cas/genética , Caderinas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Movimento Celular , Ciclina A/agonistas , Ciclina A/metabolismo , Ciclina B1/antagonistas & inibidores , Ciclina B1/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular , Edição de Genes , Células HEK293 , Humanos , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas/metabolismo
9.
Sci Adv ; 4(10): eaat2681, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30338292

RESUMO

While deregulation of mitochondrial metabolism and cytosolic glycolysis has been well recognized in tumor cells, the role of coordinated mitochondrial oxidation and cytosolic fermentation of pyruvate, a key metabolite derived from glucose, in physiological processes is not well understood. Here, we report that knockout of PTPMT1, a mitochondrial phosphoinositide phosphatase, completely blocked postnatal cerebellar development. Proliferation of granule cell progenitors, the most actively replicating cells in the developing cerebellum, was only moderately decreased, and proliferation of Purkinje cell progenitors did not seem to be affected in knockout mice. In contrast, generation of functional Bergmann glia from multipotent precursor cells (radial glia), which is essential for cerebellar corticogenesis, was totally disrupted. Moreover, despite a low turnover rate, neural stem cells were impaired in self-renewal in knockout mice. Mechanistically, loss of PTPMT1 decreased mitochondrial aerobic metabolism by limiting utilization of pyruvate, which resulted in bioenergetic stress in neural precursor/stem cells but not in progenitor or mature cells, leading to cell cycle arrest through activation of the AMPK-p19/p21 pathway. This study suggests that mitochondrial oxidation of the carbohydrate fuel is required for postnatal cerebellar development, and identifies a bioenergetic stress-induced cell cycle checkpoint in neural precursor/stem cells.


Assuntos
Metabolismo dos Carboidratos/fisiologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Mitocôndrias/metabolismo , Células-Tronco Neurais/fisiologia , Animais , Animais Recém-Nascidos , Pontos de Checagem do Ciclo Celular/genética , Cerebelo/citologia , Feminino , Glicólise , Masculino , Camundongos Knockout , Células-Tronco Neurais/citologia , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ácido Pirúvico/metabolismo
10.
Mol Nutr Food Res ; 62(3)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29080247

RESUMO

SCOPE: The number of people with diabetes is increasing rapidly in the world. In the present study, the hypoglycemic activity and potential mechanism of ergosterol (ERG), a phytosterol derived from the edible mushroom Pleurotus ostreatus are investigated in vitro and in vivo. METHODS AND RESULTS: ERG is isolated from Pleurotus ostreatus and identified by NMR spectra. The effects of ERG on the glucose uptake, glucose transporter 4 (GLUT4) translocation, GLUT4 expression, and the phosphorylation of AMPK, Akt and PKC in L6 cells are evaluated. ERG enhances glucose uptake and displays a GLUT4 translocation activity with up-regulating GLUT4 expression and phosphorylation of Akt and PKC in L6 cells. In vivo, antidiabetic activity of ERG is examined. The phosphorylation of Akt and PKC in different tissues from KK-Ay mice is assessed. ERG significantly improves insulin resistance and blood lipid indices while reducing fasting blood glucose levels and protecting pancreas and liver in the mice. Moreover, the phosphorylation of Akt and PKC is increased in different tissues. CONCLUSION: The results suggest that ERG may be a potential hypoglycemic agent for the treatment of T2DM with the probable mechanism of stimulating GLUT4 translocation and expression modulated by the PI3K/Akt pathway and PKC pathway.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Ergosterol/farmacologia , Hipoglicemiantes/farmacologia , Pleurotus/química , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos Mutantes , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação/efeitos dos fármacos , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29259649

RESUMO

Artemisia annua L. belongs to the Asteraceae family, which is indigenous to China. It has valuable pharmacological properties, such as antimalarial, anti-inflammatory, and anticancer properties. However, whether it possesses antiasthma properties is unknown. In the current study, chloroform extract of Artemisia annua L. (CEAA) was prepared, and we found that CEAA completely eliminated acetylcholine (ACh) or high K+-elicited (80 mM) contractions of mouse tracheal rings (TRs). Patch-clamp technique and ion channel blockers were employed to explore the underlying mechanisms of the relaxant effect of CEAA. In whole-cell current recording, CEAA almost fully abolished voltage-dependent Ca2+ channel (VDCC) currents and markedly enhanced large conductance Ca2+-activated K+ (BK) channel currents on airway smooth muscle cells (ASMCs). In single channel current recording, CEAA increased the opening probability but had no effect on the single channel conductance of BK channels. However, under paxilline-preincubated (a selective BK channel blocker) conditions, CEAA only slightly increased BK channel currents. These results indicate that CEAA may contain active components with potent antiasthma activity. The abolished VDCCs by CEAA may mainly contribute to the underlying mechanism through which it acts as an effective antiasthmatic compound, but the enhanced BK currents might play a less important role in the antiasthmatic effects.

12.
Cell Physiol Biochem ; 41(6): 2350-2362, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28478457

RESUMO

BACKGROUND/AIMS: Recently, some small-molecule compounds that were designed for cancer therapy have acquired new roles in the treatment of pulmonary diseases. However, drug screening aimed at abnormal muscle contraction is still limited. TSU-68 is a potent, orally administered, small-molecule agent that can reduce the vascular endothelial growth factor (VEGF)-induced Ca2+ increase in endothelial cells. We questioned whether TSU-68 could also affect calcium influx and relax airway smooth muscle (ASM) cells. The current study aimed to investigate these effects and to explore the underlying mechanisms. METHODS: The effects of TSU-68 on ASM cells were studied in mice using a series of biophysiological techniques, including force measurement and patch-clamp experiments. RESULTS: TSU-68 inhibited high K+ or acetylcholine chloride (ACh)-induced pre-contracted mouse tracheal rings in a concentration-dependent manner. Further research demonstrated that the TSU-68-induced ASM relaxation was mediated by calcium, which was decreased by blocking voltage-dependent Ca2+ channels (VDCCs) and non-selective cation channels (NSCCs). CONCLUSION: Our data indicated that TSU-68 relaxes tense ASM by reducing the intracellular Ca2+ concentration through blocking VDCCs and NSCCs, which suggested that this small molecule might be useful in the treatment of abnormal smooth muscle.


Assuntos
Indóis/farmacologia , Relaxamento Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Propionatos/farmacologia , Acetilcolina/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Oxindóis , Técnicas de Patch-Clamp , Potássio/farmacologia , Pirróis
13.
Oncotarget ; 8(13): 22175-22186, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28077799

RESUMO

Although KRAS and TP53 mutations are common in both inflammatory bowel disease-associated colorectal cancer (IBD-CRC) and sporadic colorectal cancer (S-CRC), molecular events leading to carcinogenesis may be different. Previous studies comparing the frequency of KRAS and TP53 mutations in IBD-CRC and S-CRC were inconsistent. We performed a meta-analysis to compare the presence of KRAS and TP53 mutations among patients with IBD-CRC, S-CRC, and IBD without dysplasia. A total of 19 publications (482 patients with IBD-CRC, 4,222 with S-CRC, 281 with IBD without dysplasia) met the study inclusion criteria. KRAS mutation was less frequent (RR=0.71, 95%CI 0.56-0.90; P=0.004) while TP53 mutation was more common (RR=1.24, 95%CI 1.10-1.39; P<0.001) in patients with IBD-CRC compared to S-CRC. Both KRAS (RR=3.09, 95%CI 1.47-6.51; P=0.003) and TP53 (RR=2.15, 95%CI 1.07-4.31 P=0.03) mutations were more prevalent in patients with IBD-CRC compared to IBD without dysplasia. In conclusion, IBD-CRC and S-CRC appear to have biologically different molecular pathways. TP53 appears to be more important than KRAS in IBD-CRC compared to S-CRC. Our findings suggest possible roles of TP53 and KRAS as biomarkers for cancer and dysplasia screening among patients with IBD and may also provide targeted therapy in patients with IBD-CRC.


Assuntos
Neoplasias Colorretais/etiologia , Doenças Inflamatórias Intestinais/genética , Mutação/genética , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Colorretais/patologia , Humanos , Doenças Inflamatórias Intestinais/complicações , Fatores de Risco
14.
Biochem Biophys Res Commun ; 482(1): 1-7, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836538

RESUMO

Resistance conferred by the Mi-1 gene from Solanum peruvianum is effective and widely used for controlling root-knot nematodes (RKNs, Meloidogyne spp.). However, breakdown of resistance by RKNs seriously threatens the durable application of the resistance resource. Here, a resistance-breaking population of M. incognita was selected from an avirulent population by continuously inoculating on Mi-1-carrying tomato. Histological observations showed the resistance-breaking population would not induce hypersensitive response (HR) when infecting Mi-1-carrying tomato, while avirulent population did. A total of 308 differentially expressed genes (DEGs) were identified from Mi-1-carrying tomato upon infection with resistance-breaking versus avirulent populations by RNA-seq. The expression patterns of 23 selected DEGs were validated by quantitative real-time PCR (qRT-PCR). Subsequently, seven out of nine highly up-regulated DEGs were successfully knocked down in Mi-1-carrying tomato by tobacco rattle virus (TRV) mediated RNAi. The TRV line targeting a peroxidase gene showed a much higher magnitude of reactive oxygen species (ROS) and distinct reduction of pathogenicity upon infection of the resistance-breaking population compared with that of TRV::gfp line. Our results suggested that plant peroxidase might be exploited by resistance-breaking population of M. incognita to scavenge ROS, so as to overcome Mi-1-mediated resistance.


Assuntos
Peroxidase/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solanum lycopersicum/parasitologia , Tylenchoidea/fisiologia , Animais , Resistência à Doença/fisiologia , Solanum lycopersicum/metabolismo
15.
PLoS One ; 10(3): e0121566, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822280

RESUMO

The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Músculo Liso/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cloroquina/farmacologia , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Traqueia/citologia , Traqueia/fisiologia
16.
Cell Stem Cell ; 12(1): 62-74, 2013 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-23290137

RESUMO

The regulation and coordination of mitochondrial metabolism with hematopoietic stem cell (HSC) self-renewal and differentiation is not fully understood. Here we report that depletion of PTPMT1, a PTEN-like mitochondrial phosphatase, in inducible or hematopoietic-cell-specific knockout mice resulted in hematopoietic failure due to changes in the cell cycle and a block in the differentiation of HSCs. Surprisingly, the HSC pool was increased by âˆ¼40-fold in PTPMT1 knockout mice. Reintroduction of wild-type PTPMT1, but not catalytically deficient PTPMT1 or truncated PTPMT1 lacking mitochondrial localization, restored differentiation capabilities of PTPMT1 knockout HSCs. Further analyses demonstrated that PTPMT1 deficiency altered mitochondrial metabolism and that phosphatidylinositol phosphate substrates of PTPMT1 directly enhanced fatty-acid-induced activation of mitochondrial uncoupling protein 2. Intriguingly, depletion of PTPMT1 from myeloid, T lymphoid, or B lymphoid progenitors did not cause any defects in lineage-specific knockout mice. This study establishes a crucial role of PTPMT1 in the metabolic regulation of HSC function.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Diferenciação Celular/genética , Células Cultivadas , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , PTEN Fosfo-Hidrolase/genética , Proteína Desacopladora 2
17.
Pflugers Arch ; 464(6): 671-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23053477

RESUMO

Airway ciliary beat activity (CBA) plays a pivotal role in protecting the body by removing mucus and pathogens from the respiratory tract. Since CBA is complicated and cannot be characterized by merely frequency, we recorded CBA using laser confocal line scanning and defined six parameters for describing CBA. The values of these parameters were all above 0 when measured in beating ciliated cells from mouse tracheae. We subsequently used 10 µM adenosine-5'-triphosphate (ATP) to stimulate ciliated cells and simultaneously recorded intracellular Ca(2+) levels and CBA. We found that intracellular Ca(2+) levels first increased, followed by an increase in CBA. Among the six parameters, frequency, amplitude, and integrated area significantly increased, whereas rise time, decay time, and full duration at half maximum markedly decreased. The results suggest that these six parameters are appropriate for assessing CBA and that increased intracellular Ca(2+) levels might enhance CBA. We next used our established methods to observe changes in mechanically stimulated cilia tips. We found that mechanical stimulation-induced changes in both intracellular Ca(2+) levels and CBA were not only similar to those induced by ATP, but were also blocked by treatment with a Ca(2+) chelator, BAPTA-AM, (10 µM) for 10 min. Moreover, while the same blockage was observed under Ca(2+)-free conditions, addition of 2 mM Ca(2+) into the chamber restored increases in both intracellular Ca(2+) levels and CBA. Taken together, we have provided a novel method for real-time measurement and complete analysis of CBA as well as demonstrated that mechanical stimulation of cilia tips resulted in Ca(2+) influx that led to increased intracellular Ca(2+) levels, which in turn triggered CBA enhancement.


Assuntos
Cálcio/fisiologia , Cílios/fisiologia , Microscopia Confocal/métodos , Traqueia/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cílios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Traqueia/metabolismo
18.
Mol Cell Biol ; 31(24): 4902-16, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21986498

RESUMO

Mitochondria are highly dynamic organelles that play multiple roles in cells. How mitochondria cooperatively modulate embryonic stem (ES) cell function during development is not fully understood. Global disruption of Ptpmt1, a mitochondrial Pten-like phosphatidylinositol phosphate (PIP) phosphatase, resulted in developmental arrest and postimplantation lethality. Ptpmt1(-/-) blastocysts failed to outgrow, and inner-cell-mass cells failed to thrive. Depletion of Ptpmt1 in conditional knockout ES cells decreased proliferation without affecting energy homeostasis or cell survival. Differentiation of Ptpmt1-depleted ES cells was essentially blocked. This was accompanied by upregulation of cyclin-dependent kinase inhibitors and a significant cell cycle delay. Reintroduction of wild-type but not of catalytically deficient Ptpmt1 C132S or truncated Ptpmt1 lacking the mitochondrial localization signal restored the differentiation capabilities of Ptpmt1 knockout ES cells. Intriguingly, Ptpmt1 is specifically important for stem cells, as ablation of Ptpmt1 in differentiated embryonic fibroblasts did not disturb cellular function. Further analyses demonstrated that oxygen consumption of Ptpmt1-depleted cells was decreased, while glycolysis was concomitantly enhanced. In addition, mitochondrial fusion/dynamics were compromised in Ptpmt1 knockout cells due to accumulation of PIPs. These studies, while establishing a crucial role for Ptpmt1 phosphatase in embryogenesis, reveal a mitochondrial metabolic stress-activated checkpoint in the control of ES cell differentiation.


Assuntos
Pontos de Checagem do Ciclo Celular , Diferenciação Celular , Desenvolvimento Embrionário/genética , Células-Tronco Embrionárias/citologia , Mitocôndrias/metabolismo , PTEN Fosfo-Hidrolase/genética , Alelos , Animais , Apoptose , Proliferação de Células , Clonagem Molecular , Células-Tronco Embrionárias/metabolismo , Fibroblastos/metabolismo , Glicólise , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Knockout , Microscopia Confocal , PTEN Fosfo-Hidrolase/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Espécies Reativas de Oxigênio/análise , Estresse Fisiológico
19.
Nat Cell Biol ; 11(6): 769-76, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19465920

RESUMO

The intracellular Ca(2+) concentration ([Ca(2+)](i)) in skeletal muscles must be rapidly regulated during the excitation-contraction-relaxation process. However, the signalling components involved in such rapid Ca(2+) movement are not fully understood. Here we report that mice deficient in the newly identified PtdInsP (phosphatidylinositol phosphate) phosphatase MIP/MTMR14 (muscle-specific inositol phosphatase) show muscle weakness and fatigue. Muscles isolated from MIP/MTMR14(-/-) mice produced less contractile force, had markedly prolonged relaxation and showed exacerbated fatigue relative to normal muscles. Further analyses revealed that MIP/MTMR14 deficiency resulted in spontaneous Ca(2+) leakage from the internal store - the sarcoplasmic reticulum. This was attributed to decreased metabolism (dephosphorylation) and the subsequent accumulation of MIP/MTMR14 substrates, especially PtdIns(3,5)P(2) and PtdIns (3,4)P(2). Furthermore, we found that PtdIns(3,5)P(2) and PtdIns(3,4)P(2) bound to, and directly activated, the Ca(2+) release channel (ryanodine receptor 1, RyR1) of the sarcoplasmic reticulum. These studies provide the first evidence that finely controlled PtdInsP levels in muscle cells are essential for maintaining Ca(2+) homeostasis and muscle performance.


Assuntos
Cálcio/metabolismo , Homeostase , Doenças Musculares/enzimologia , Monoéster Fosfórico Hidrolases/deficiência , Sequência de Aminoácidos , Animais , Sinalização do Cálcio/fisiologia , Eletrofisiologia , Feminino , Coração/anatomia & histologia , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/fisiologia , Contração Miocárdica/fisiologia , Miocárdio/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/genética , Coelhos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Distribuição Tecidual
20.
Methods Mol Biol ; 430: 103-18, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18370294

RESUMO

In recent years, the field of stem cells has become one of the most rapidly growing areas in biological and medical sciences. Embryonic stem (ES) cells differentiate efficiently in vitro and give rise to many different somatic cell types. The ability to generate a wide spectrum of differentiated cell types from ES cells in culture offers a powerful approach for studying lineage induction and specification and a promising source of progenitors for cell replacement therapy. Hematopoietic progenitors present within ES cell-derived embryoid bodies (EB) can be assayed by directly replating EB cells or by replating sorted cell populations into semisolid media with hematopoietic growth factors. The developmental kinetics of various hematopoietic lineage precursors within EBs and molecular and cellular studies of these cells have suggested that the sequence of events leading to the onset of hematopoiesis within EB is similar to that found within the mouse embryo. Thus, the in vitro differentiation model of ES cells to hematopoietic cells provides a unique opportunity to study onset mechanisms involved in hematopoietic development and to characterize hematopoietic lineage-specific gene expression. In this chapter, we attempt to be as comprehensive as possible and yet focus on what we perceive to be the most widely used protocols for maintenance of murine ES cells, in vitro hematopoietic differentiation of ES cells, and clonal assays of hematopoietic progenitors.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Animais , Células Cultivadas , Meios de Cultura , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA