Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(22): 5513-5524, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38745541

RESUMO

BACKGROUND: In the domain of plastic surgery, nasal cartilage regeneration is of significant importance. The extracellular matrix (ECM) from porcine nasal septum cartilage has shown potential for promoting human cartilage regeneration. Nonetheless, the specific biological inductive factors and their pathways in cartilage tissue engineering remain undefined. METHODS: The decellularized matrix derived from porcine nasal septum cartilage (PN-DCM) was prepared using a grinding method. Human umbilical cord mesenchymal stem cells (HuMSCs) were cultured on these PN-DCM scaffolds for 4 weeks without exogenous growth factors to evaluate their chondroinductive potential. Subsequently, proteomic analysis was employed to identify potential biological inductive factors within the PN-DCM scaffolds. RESULTS: Compared to the TGF-ß3-cultured pellet model serving as a positive control, the PN-DCM scaffolds promoted significant deposition of a Safranin-O positive matrix and Type II collagen by HuMSCs. Gene expression profiling revealed upregulation of ACAN, COL2A1, and SOX9. Proteomic analysis identified potential chondroinductive factors in the PN-DCM scaffolds, including CYTL1, CTGF, MGP, ITGB1, BMP7, and GDF5, which influence HuMSC differentiation. CONCLUSION: Our findings have demonstrated that the PN-DCM scaffolds promoted HuMSC differentiation towards a nasal chondrocyte phenotype without the supplementation of exogenous growth factors. This outcome is associated with the chondroinductive factors present within the PN-DCM scaffolds.


Assuntos
Diferenciação Celular , Condrogênese , Células-Tronco Mesenquimais , Septo Nasal , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Septo Nasal/citologia , Septo Nasal/química , Animais , Suínos , Células Cultivadas , Alicerces Teciduais/química , Matriz Extracelular Descelularizada/química , Matriz Extracelular Descelularizada/farmacologia , Matriz Extracelular/metabolismo , Matriz Extracelular/química , Engenharia Tecidual , Cordão Umbilical/citologia
2.
Food Funct ; 14(9): 4242-4253, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37067400

RESUMO

Pearl oyster meat, a by-product of pearl production, is rich in protein, but has a low utilization rate. Our previous study showed that pearl oyster meat hydrolysates have potential anti-inflammatory activity. In this study, highly active peptides from pearl oyster meat hydrolysates were purified, identified, and extracted, and their anti-inflammatory activity was further investigated. A total of 206 peptides were identified, and three novel anti-inflammatory peptides, TWP (402.1903 Da), TAMY (484.1992 Da) and FPGA (390.1903 Da), were screened by molecular docking. The molecular docking results showed that TWP, TAMY and FPGA can bind to key regions in the cyclooxygenase-2 (COX-2) active site. Furthermore, the three anti-inflammatory peptides can effectively regulate the release of inflammatory mediators from RAW264.7 macrophages by reducing the levels of nitric oxide (NO) and pro-inflammatory cytokines (such as TNF-α, IL-6 and IL-1ß), and increasing the production of anti-inflammatory cytokine IL-10, showing great anti-inflammatory activity. This study provides a new theoretical reference for the development of functional foods or nutritional supplements with natural anti-inflammatory effects.


Assuntos
Pinctada , Animais , Pinctada/metabolismo , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Peptídeos/metabolismo , Macrófagos , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA