Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Histol Histopathol ; : 18707, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38293776

RESUMO

Tuberous sclerosis complex (TSC) and focal cortical dysplasia (FCD) type IIb are the predominant causes of drug-refractory epilepsy in children. Dysmorphic neurons (DNs), giant cells (GCs), and balloon cells (BCs) are the most typical pathogenic profiles in cortical lesions of TSC and FCD IIb patients. However, mechanisms underlying the pathological processes of TSC and FCD IIb remain obscure. The Plexin-B2-Sema4C signalling pathway plays critical roles in neuronal morphogenesis and corticogenesis during the development of the central nervous system. However, the role of the Plexin-B2 system in the pathogenic process of TSC and FCD IIb has not been identified. In the present study, we investigated the expression and cell distribution characteristics of Plexin-B2 and Sema4C in TSC and FCD IIb lesions with molecular technologies. Our results showed that the mRNA and protein levels of Plexin-B2 expression were significantly increased both in TSC and FCD IIb lesions versus that in the control cortex. Notably, Plexin-B2 was also predominantly observed in GCs in TSC epileptic lesions and BCs in FCD IIb lesions. In contrast, the expression of Sema4C, the ligand of Plexin-B2, was significantly decreased in DNs, GCs, and BCs in TSC and FCD IIb epileptic lesions. Additionally, Plexin-B2 and Sema4C were expressed in astrocytes and microglia cells in TSC and FCD IIb lesions. Furthermore, the expression of Plexin-B2 was positively correlated with seizure frequency in TSC and FCD IIb patients. In conclusion, our results showed the Plexin-B2-Sema4C system was abnormally expressed in cortical lesions of TSC and FCD IIb patients, signifying that the Plexin-B2-Sema4C system may play a role in the pathogenic development of TSC and FCD IIb.

2.
Front Neurol ; 14: 1255097, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020594

RESUMO

Background: Focal cortical dysplasia (FCD) IIb and tuberous sclerosis complex (TSC) are common causes of drug-resistant epilepsy in children. However, the etiologies related to the development of FCD IIb and TSC are not fully understood. α-synuclein (α-syn) is a member of synucleins family that plays crucial roles in modulating synaptic transmission in central nervous system. Here, we explored the expression profiles and potential pathogenic functions of α-syn in cortical lesions of epileptic patients with FCD IIb and TSC. Methods: Surgical specimens from epileptic patients with FCD IIb and TSC, as well as FCD rats generated by in utero X-ray-radiation were adopted in this study and studied with immunohistochemistry, immunofluorescence, western blotting, and co-immunoprecipitation etc. molecular biological techniques. Result: Our results showed that α-syn expression was reduced in FCD IIb and TSC lesions. Specifically, α-syn protein was intensely expressed in dysplastic neurons (DNs) and balloon cells (BCs) in FCD IIb lesions, whereas was barely detected in DNs and giant cells (GCs) of TSC lesions. Additionally, p-α-syn, the aggregated form of α-syn, was detected in DNs, BCs, GCs, and glia-like cells of FCD IIb and TSC lesions. We previous showed that the function of N-methyl-D-aspartate receptor (NMDAR) was enhanced in FCD rats generated by X-ray-radiation. Here, we found the interaction between α-syn and NMDAR subunits NMDAR2A, NMDAR2B were augmented in cortical lesions of FCD patients and FCD rats. Conclusion: These results suggested a potential role of α-syn in the pathogenesis of FCD IIb and TSC by interfering with NMDAR.

3.
Histol Histopathol ; 38(11): 1239-1248, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37170703

RESUMO

Plexins are a large family of single-pass transmembrane proteins that mediate semaphorin signaling in multiple systems. Plexins were originally characterized for their role modulating cytoskeletal activity to regulate axon guidance during nervous system development. Thereafter, different semaphorin-plexin complexes were identified in the nervous system that have diverse functions in neurons, astrocytes, glia, oligodendrocytes, and brain derived-tumor cells, providing unexpected but meaningful insights into the biological activities of this protein family. Here, we review the overall structure and relevant downstream signaling cascades of plexins. We consider the current knowledge regarding the function of semaphorin-plexin cascades in the nervous system, including the most recent data regarding their roles in neuronal development, neuroinflammation, and glioma.


Assuntos
Moléculas de Adesão Celular , Sistema Nervoso , Semaforinas , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Semaforinas/química , Semaforinas/metabolismo
4.
Brain Pathol ; 32(5): e13065, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35259773

RESUMO

Emergence of dysmorphic neurons is the primary pathology in focal cortical dysplasia (FCD) associated pediatric intractable epilepsy; however, the etiologies related to the development and function of dysmorphic neurons are not fully understood. Our previous studies revealed that the expression of vascular endothelial growth factor-C (VEGF-C) and corresponding receptors VEGFR-2, VEGFR-3 was increased in the epileptic lesions of patients with tuberous sclerosis complex or mesial temporal lobe epilepsy. Here, we showed that the expression of VEGF-C, VEGFR-2, and VEGFR-3 was increased at both mRNA and protein levels in patients with cortical lesions of type I, IIa, and IIb FCD. The immunoreactivity of VEGF-C, VEGFR-2 and VEGFR-3 was located in the micro-columnar neurons in FCD type I lesions, dysplastic neurons (DNs) in FCD type IIa lesions, balloon cells (BCs) and astrocytes in FCD type IIb lesions. Additionally, the amplitude of evoked-EPSCs (eEPSC) mediated by NMDA receptor, the ratio of NMDA receptor- and AMPA receptor-mediated eEPSC were increased in the dysmorphic neurons of FCD rats established by prenatal X-ray radiation. Furthermore, NMDA receptor mediated current in dysmorphic neurons was further potentiated by exogenous administration of VEGF-C, however, could be antagonized by ki8751, the blocker of VEGFR-2. These results suggest that VEGF-C system participate in the pathogenesis of cortical lesions in patients with FCD in association with modulating NMDA receptor-mediated currents.


Assuntos
Malformações do Desenvolvimento Cortical , Fator C de Crescimento do Endotélio Vascular , Animais , Epilepsia , Humanos , Malformações do Desenvolvimento Cortical/patologia , Malformações do Desenvolvimento Cortical do Grupo I , Ratos , Receptores de N-Metil-D-Aspartato , Fator C de Crescimento do Endotélio Vascular/genética , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Front Aging Neurosci ; 13: 792733, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046793

RESUMO

Background: The role of adenosine A2A receptor (A2AR) in the ischemic white matter damage induced by chronic cerebral hypoperfusion remains obscure. Here we investigated the role of A2AR in the process of macrophage polarizations in the white matter damage induced by chronic cerebral hypoperfusion and explored the involved signaling pathways. Methods: We combined mouse model and macrophage cell line for our study. White matter lesions were induced in A2AR knockout mice, wild-type mice, and chimeric mice generated by bone marrow cells transplantation through bilateral common carotid artery stenosis. Microglial/macrophage polarization in the corpus callosum was detected by immunofluorescence. For the cell line experiments, RAW264.7 macrophages were treated with the A2AR agonist CHS21680 or A2AR antagonist SCH58261 for 30 min and cultured under low-glucose and hypoxic conditions. Macrophage polarization was examined by immunofluorescence. The expression of peroxisome proliferator activated receptor gamma (PPARγ) and transcription factor P65 was examined by western blotting and real-time polymerase chain reaction (RT-PCR). Inflammatory cytokine factors were assessed by enzyme-linked immunosorbent assay (ELISA) and RT-PCR. Results: Both global A2AR knockout and inactivation of A2AR in bone marrow-derived cells enhanced M1 marker expression in chronic ischemic white matter lesions. Under low-glucose and hypoxic conditions, CGS21680 treatment promoted macrophage M2 polarization, increased the expression of PPARγ, P65, and interleukin-10 (IL-10) and suppressed the expression of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß). The CGS21680-induced upregulation of P65 and IL-10 was abolished in macrophages upon PPARγ knockdown. The downregulation of TNF-α and IL-1ß by CGS21680 was less affected by PPARγ knockdown. Conclusions: In the cerebral hypoperfusion induced white matter damage, A2AR signaling in bone marrow-derived cells induces macrophage M2 polarization and increases the expression of the anti-inflammatory factor IL-10 via the PPARγ-P65 pathway, both of which might explain its neuroprotective effect.

6.
Exp Neurol ; 302: 104-111, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339053

RESUMO

Painful neuropathy, as a severe side effect of chemotherapeutic bortezomib, is the most common reason for treatment discontinuation. However, the mechanism by which administration of bortezomib leads to painful neuropathy remains unclear. In the present study, we found that application of bortezomib significantly increased the expression of NOD-like receptor family pyrin domain containing 3 (NLRP3) and phosphorylated signal transducer and activator of transcription-3 (STAT3) in dorsal root ganglion (DRG). Intrathecal injection of NLRP3 siRNA significantly prevented the mechanical allodynia induced by bortezomib treatment, and intrathecal injection of recombinant adeno-associated virus vector encoding NLRP3 markedly decreased paw withdrawal threshold of naive rats. Furthermore, the expressions of p-STAT3 were colocalized with NLRP3-positive cells in DRG neurons, and inhibition of STAT3 by intrathecal injection of AAV-Cre-GFP into STAT3flox/flox mice or inhibitor S3I-201 suppressed the upregulation of NLRP3 and mechanical allodynia induced by bortezomib treatment. Chromatin immunoprecipitation further found that bortezomib increased the recruitment of STAT3, as well as the acetylation of histone H3 and H4, in the NLRP3 promoter region in DRG neurons. Importantly, inhibition of the STAT3 activity by using S3I-201 or DRG local deficiency of STAT3 also significantly prevented the upregulated H3 and H4 acetylation in the NLRP3 promoter region following bortezomib treatment. Altogether, our results suggest that the upregulation of NLRP3 in DRG via STAT3-dependent histone acetylation is critically involved in bortezomib-induced mechanical allodynia.


Assuntos
Antineoplásicos/toxicidade , Bortezomib/toxicidade , Histonas/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Dor/induzido quimicamente , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Fator de Transcrição STAT3/metabolismo , Regulação para Cima/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Ácidos Aminossalicílicos/farmacologia , Animais , Benzenossulfonatos/farmacologia , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dor/fisiopatologia , Doenças do Sistema Nervoso Periférico/fisiopatologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley , Fator de Transcrição STAT3/genética , Transfecção
7.
Exp Neurol ; 273: 263-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26376216

RESUMO

Paclitaxel, a widely used chemotherapeutic agent, often induces painful peripheral neuropathy and at present no effective drug is available for treatment of the serious side effect. Here, we tested if intragastrical application of bulleyaconitine A (BLA), which has been approved for clinical treatment of chronic pain in China since 1985, could relieve the paclitaxel-induced neuropathic pain. A single dose of BLA attenuated the mechanical allodynia, thermal hyperalgesia induced by paclitaxel dose-dependently. Repetitive administration of the drug (0.4 and 0.8 mg/kg, t.i.d. for 7 d) during or after paclitaxel treatment produced a long-lasting inhibitory effect on thermal hyperalgesia, but not on mechanical allodynia. In consistency with the behavioral results, in vivo electrophysiological experiments revealed that spinal synaptic transmission mediated by C-fiber but not A fiber was potentiated, and the magnitude of long-term potentiation (LTP) at C-fiber synapses induced by the same high frequency stimulation was ~50% higher in paclitaxel-treated rats, compared to the naïve rats. Spinal or intravenous application of BLA depressed the spinal LTP, dose-dependently. Furthermore, patch clamp recordings in spinal cord slices revealed that the frequency but not amplitude of both spontaneous excitatory postsynaptic current (sEPSCs) and miniature excitatory postsynaptic currents (mEPSCs) in lamina II neurons was increased in paclitaxel-treated rats, and the superfusion of BLA reduced the frequency of sEPSCs and mEPSCs in paclitaxel-treated rats but not in naïve ones. Taken together, we provide novel evidence that BLA attenuates paclitaxel-induced neuropathic pain and that depression of spinal LTP at C-fiber synapses via inhibiting presynaptic transmitter release may contribute to the effect.


Assuntos
Aconitina/análogos & derivados , Antineoplásicos Fitogênicos/farmacologia , Fibras Nervosas Amielínicas/efeitos dos fármacos , Neuralgia , Paclitaxel/farmacologia , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Aconitina/farmacologia , Aconitina/uso terapêutico , Análise de Variância , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimulação Elétrica , Potenciais Evocados/efeitos dos fármacos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Técnicas In Vitro , Masculino , Fibras Nervosas Amielínicas/fisiologia , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/patologia , Medição da Dor , Limiar da Dor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Potenciais Sinápticos/efeitos dos fármacos , Fatores de Tempo
8.
Gynecol Obstet Invest ; 79(3): 189-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25722014

RESUMO

OBJECTIVE: To investigate whether and how human chorionic gonadotropin (HCG) treatment ameliorates endometriosis in an endometriotic rat model. METHODS: Twenty-four endometriosis rats were established and were randomly divided into four groups, and then the rats were treated with 19.4, 25.8, and 51.6 IU/100 g weight/day of HCG, respectively. The control group was treated with 0.9% NaCl. After 15 days (3 estrous cycles), the ectopic lesion volume and the expression of leptin protein in eutopic and ectopic endometrium were investigated. RESULTS: After HCG treatment, the volumes of endometriotic lesions were significantly smaller than those before treatment. During endometriosis development, the expression of leptin protein in eutopic and ectopic endometrium was remarkably increased. HCG administration reversed leptin upregulation in endometriotic tissues. CONCLUSION: HCG therapy appears to be an effective treatment for endometriosis in rats through down-regulation of leptin expression in eutopic and ectopic endometrium.


Assuntos
Gonadotropina Coriônica/farmacologia , Endometriose/tratamento farmacológico , Endométrio/patologia , Leptina/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Regulação para Baixo , Endometriose/metabolismo , Endometriose/patologia , Endométrio/metabolismo , Feminino , Imunofluorescência , Humanos , Ratos , Ratos Sprague-Dawley
9.
Exp Neurol ; 247: 466-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23357618

RESUMO

The over-expression of voltage-gated sodium channels (VGSCs) in dorsal root ganglion (DRG) neurons following peripheral nerve injury contributes to neuropathic pain by generation of the ectopic discharges of action potentials. However, mechanisms underlying the change in VGSCs' expression are poorly understood. Our previous work has demonstrated that the pro-inflammatory cytokine TNF-α up-regulates VGSCs. In the present work we tested if anti-inflammatory cytokine IL-10, which had been proven to be effective for treating neuropathic pain, had the opposite effect. Western blot and immunofluorescence results showed that IL-10 receptor was localized in DRG neurons. Recombinant rat IL-10 (200 pg/ml) not only reduced the densities of TTX-sensitive and Nav1.8 currents in control DRG neurons, but also reversed the increase of the sodium currents induced by rat recombinant TNF-α (100 pg/ml), as revealed by patch-clamp recordings. Consistent with the electrophysiological results, real-time PCR and western blot revealed that IL-10 (200 pg/ml) down-regulated VGSCs in both mRNA and protein levels and reversed the up-regulation of VGSCs by TNF-α. Moreover, repetitive intrathecal administration of rrIL-10 for 3 days (4 times per day) attenuated mechanical allodynia in L5 spinal nerve ligation model and profoundly inhibited the excitability of DRG neurons. These results suggested that the down-regulation of the sodium channels in DRG neurons might contribute to the therapeutic effect of IL-10 on neuropathic pain.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Gânglios Espinais/patologia , Interleucina-10/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Ligadura , Masculino , Potenciais da Membrana/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Medição da Dor , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Sprague-Dawley , Receptores de Interleucina-10/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Canais de Sódio Disparados por Voltagem/genética
10.
J Neurosci ; 33(4): 1540-51, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23345228

RESUMO

At present, effective drug for treatment of neuropathic pain is still lacking. Recent studies have shown that the ligands of translocator protein (TSPO, 18 kDa), a peripheral receptor for benzodiazepine, modulate inflammatory pain. Here, we report that TSPO was upregulated in astrocytes and microglia in the ipsilateral spinal dorsal horn of rats following L5 spinal nerve ligation (L5 SNL), lasting until the vanishing of the behavioral signs of neuropathic pain (∼50 d). Importantly, a single intrathecal injection of specific TSPO agonists Ro5-4864 or FGIN-1-27 at 7 and 21 d after L5 SNL depressed the established mechanical allodynia and thermal hyperalgesia dramatically, and the effect was abolished by pretreatment with AMG, a neurosteroid synthesis inhibitor. Mechanically, Ro5-4864 substantially inhibited spinal astrocytes but not microglia, and reduced the production of tumor necrosis factor-α (TNF-α) in vivo and in vitro. The anti-neuroinflammatory effect was also prevented by AMG. Interestingly, TSPO expression returned to control levels or decreased substantially, when neuropathic pain healed naturally or was reversed by Ro5-4864, suggesting that the role of TSPO upregulation might be to promote recovery from the neurological disorder. Finally, the neuropathic pain and the upregulation of TSPO by L5 SNL were prevented by pharmacological blockage of Toll-like receptor 4 (TLR4). These data suggested that TSPO might be a novel therapeutic target for the treatment of neuropathic pain.


Assuntos
Proteínas de Transporte/biossíntese , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores de GABA-A/biossíntese , Animais , Astrócitos/metabolismo , Western Blotting , Células Cultivadas , Técnicas de Cocultura , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Masculino , Neuroglia/metabolismo , Ratos , Ratos Sprague-Dawley , Nervos Espinhais/lesões , Nervos Espinhais/metabolismo , Regulação para Cima
11.
Exp Neurol ; 227(2): 279-86, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21145890

RESUMO

The ectopic discharges observed in uninjured dorsal root ganglion (DRG) neurons following various lesions of spinal nerves have been attributed to functional alterations of voltage-gated sodium channels (VGSCs). Such mechanisms may be important for the development of neuropathic pain. However, the pathophysiology underlying the functional modulation of VGSCs following nerve injury is largely unknown. Here, we studied this issue with use of a selective lumbar 5 ventral root transection (L5-VRT) model, in which dorsal root ganglion (DRG) neurons remain intact. We found that the L5-VRT increased the current densities of TTX-sensitive Na channels as well as currents in Nav1.8, but not Nav1.9 channels in uninjured DRG neurons. The thresholds of action potentials decreased and firing rates increased in DRG neurons following L5-VRT. As we found that levels of tumor necrosis factor-alpha (TNF-α) increased in cerebrospinal fluid (CSF) and in DRG tissue after L5-VRT, we tested whether the increased TNF-α might result in the changes in sodium channels. Indeed, recombinant rat TNF (rrTNF) enhanced the current densities of TTX-S and Nav1.8 in cultured DRG neurons dose-dependently. Furthermore, genetic deletion of TNF receptor 1 (TNFR-1) in mice attenuated the mechanical allodynia and prevented the increase in sodium currents in DRG neurons induced by L5-VRT. These data suggest that the increase in sodium currents in uninjured DRG neurons following nerve injury might be mediated by over-production of TNF-α.


Assuntos
Gânglios Espinais/fisiologia , Ativação do Canal Iônico/fisiologia , Neurônios Motores/metabolismo , Neuropeptídeos/fisiologia , Canais de Sódio/fisiologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Células Cultivadas , Gânglios Espinais/lesões , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.8 , Canal de Sódio Disparado por Voltagem NAV1.9 , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA