Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 358: 142132, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670505

RESUMO

The escalation of industrial activities has escalated the production of pharmaceutical and dyeing effluents, raising significant environmental issues. In this investigation, a hybrid approach of Fenton-like reactions and adsorption was used for deep treatment of these effluents, focusing on effects of variables like hydrogen peroxide concentration, catalyst type, pH, reaction duration, temperature, and adsorbent quantity on treatment effectiveness, and the efficacy of acid-modified attapulgite (AMATP) and ferric iron (Fe(III))-loaded AMATP (Fe(III)-AMATP) was examined. Optimal operational conditions were determined, and the possibility of reusing the catalysts was explored. Employing Fe3O4 as a heterogeneous catalyst and AMATP for adsorption, CODCr was reduced by 78.38-79.14%, total nitrogen by 71.53-77.43%, and phosphorus by 97.74-98.10% in pharmaceutical effluents. Similarly, for dyeing effluents, Fe(III)-AMATP achieved 79.87-80.94% CODCr, 68.59-70.93% total nitrogen, and 79.31-83.33% phosphorus reduction. Regeneration experiments revealed that Fe3O4 maintained 59.48% efficiency over three cycles, and Fe(III)-AMATP maintained 62.47% efficiency over four cycles. This work offers an economical, hybrid approach for effective pharmaceutical and dyeing effluent treatment, with broad application potential.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Resíduos Industriais , Compostos de Magnésio , Compostos de Silício , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/química , Compostos Férricos/química , Adsorção , Compostos de Silício/química , Compostos de Magnésio/química , Peróxido de Hidrogênio/química , Catálise , Ferro/química , Fósforo/química , Nitrogênio/química , Corantes/química , Concentração de Íons de Hidrogênio , Purificação da Água/métodos
2.
Small ; : e2400205, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38676331

RESUMO

The conventional membranes used for separating oil/water emulsions are typically limited by the properties of the membrane materials and the impact of membrane fouling, making continuous long-term usage unachievable. In this study, a filtering electrode with synchronous self-cleaning functionality is devised, exhibiting notable antifouling ability and an extended operational lifespan, suitable for the continuous separation of oil/water emulsions. Compared with the original Ti foam, the in situ growth of NiTi-LDH (Layered double hydroxide) nano-flowers endows the modified Ti foam (NiTi-LDH/TF) with exceptional superhydrophilicity and underwater superoleophobicity. Driven by gravity, a rejection rate of over 99% is achieved for various emulsions containing oil content ranging from 1% to 50%, as well as oil/seawater emulsions. The flux recovery rate exceeds 90% after one hundred cycles and a 4-h filtration period. The enhanced separation performance is realized through the "gas bridge" effect during in situ aeration and electrochemical anodic oxidation. The internal aeration within the membrane pores contributes to the removal of oil foulants. This study underscores the potential of coupling foam metal filtration materials with electrochemical technology, providing a paradigm for the exploration of novel oil/water separation membranes.

3.
J Hazard Mater ; 469: 133973, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452683

RESUMO

Efficient oil-water separation has always been a research hotspot in the field of environmental studies. Employing a one-step hydrothermal approach, NiFe-layered double hydroxides (LDH) nanosheets were synthesized on nickel foam substrates. The resulting NiFe-LDH/NF membrane exhibited rejection rates exceeding 99% across six diverse oil-water mixtures, concurrently demonstrating a remarkable ultra-high flux of 1.4 × 106 L·m-2·h-1. This flux value significantly surpasses those documented in existing literature, maintaining stable performance over 1000 manual filtration cycles. These breakthroughs stem from the synergistic interplay among the three-dimensional channels of the nickel foam, the nanosheets, and the hydration layer. By leveraging the pore size of the foam to enhance the functionality of the hydration layer, the conventional trade-off between permeability and selectivity was transformed into a balanced force relationship between the hydration layer and the oil phase. The operational and failure mechanisms of the hydration layer were examined using the prepared NiFe-LDH/NF membrane, validating the correlation between oil phase viscosity and density with hydration layer rupture. Additionally, an extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory was employed to investigate changes in interaction energy, further reinforcing the study's findings. This research contributes novel insights and assistance to the comprehension and application of hydration layers in other membrane studies dedicated to oil-water separation.

4.
J Environ Manage ; 354: 120383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382434

RESUMO

The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ferro , Eliminação de Resíduos Líquidos/métodos , Antibacterianos , Pós , Eletrólise/métodos , Oxirredução , Peróxido de Hidrogênio
5.
Environ Res ; 234: 116420, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37327838

RESUMO

This study investigated the combined effects of polymeric aluminum chloride (PAC) and polyacrylamide (PAM) on sludge dewatering, aiming to unveil underlying mechanisms. Co-conditioning with 15 mg g-1 PAC and 1 mg g-1 PAM achieved optimal dewatering, reducing specific filtration resistance (SFR) of co-conditioned sludge to 4.38 × 1012 m-1kg-1, a mere 48.1% of raw sludge's SFR. Compared with the CST of raw sludge (36.45 s), sludge sample can be significantly reduced to 17.7 s. Characterization tests showed enhanced neutralization and agglomeration in co-conditioned sludge. Theoretical calculations revealed elimination of interaction energy barriers between sludge particles post co-conditioning, converting sludge surface from hydrophilic (3.03 mJ m-2) to hydrophobic (-46.20 mJ m-2), facilitating spontaneous agglomeration. Findings explain improved dewatering performance. Based on Flory-Huggins lattice theory, connection between polymer structure and SFR was established. Raw sludge formation triggered significant change in chemical potential, increasing bound water retention capacity and SFR. In contrast, co-conditioned sludge exhibited thinnest gel layer, reducing SFR and significantly improving dewatering. These findings represent a paradigm shift, shedding new light on fundamental thermodynamic mechanisms of sludge dewatering with different chemical conditioning.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Cloreto de Alumínio , Floculação , Polímeros/química , Filtração , Termodinâmica , Água/química
6.
Chemosphere ; 315: 137791, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36623602

RESUMO

The oily water treatment is becoming one of the hottest topics due to that increase of offshore oil transportation and the various accident oil leakages. In this study, a functional TiO2-ABS composite membrane was generated through the three-dimensional (3D) printing strategy for the first time and was conducted to simulated oily water treatment. The TiO2-ABS composite membrane demonstrated a significant promotion in hydrophilicity and oleophobicity which were evidenced by the water contact angle of 14.8° and the underwater oil contact angle of 144.7°, respectively. The optimal modified membrane had both exceedingly high flux (1.8 × 105 L m-2·h-1) and oil rejection rate (99.5%). Moreover, the results of filtration cycles of 10 days and extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory demonstrated that the modified membranes took possession of excellent stability and antifouling property. What was more, the TiO2-ABS composite membrane revealed over 99% rejection to all five types of oil/water systems. The interestingly experimental results indicated that the prepared membrane possessed a broad development trend and application prospect in the field of oily water treatment.


Assuntos
Acrilonitrila , Butadienos , Estireno , Titânio , Óleos
7.
Sci Total Environ ; 857(Pt 2): 159183, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36202361

RESUMO

Continuous increasing discharge of industrial oily wastewater and frequent occurrence of oil spill accidents have taken heavy tolls on global environment and human health. Organic-inorganic modifications can fabricate superhydrophilic/submerged superoleophobic membranes for efficient oil-water separation/treatment though they still suffer from complex operation, non-environmental friendliness, expensive cost or uneven distribution. Herein, a new strategy regarding tannic acid (TA)-Ti(IV) coating and CaCO3-based biomineralization through simple inkjet printing processes was proposed to modify polyvinylidene fluoride (PVDF) membrane, endowing the membrane with high hydrophilicity (water contact angle (WCA) decreased from 86.01° to 14.94°) and underwater superoleophobicity (underwater contact angle (UOCA) > 155°). The optimized TA-Ti(IV)-CaCO3 modified membrane possessed perfect water permeation to various oil/water emulsions (e.g., 355.7 L·m-2·h-1 for gasoline emulsion) under gravity with superior separation efficiency (>98.8 %), leading the way in oil/water emulsion separation performance of PVDF membranes modified with polyphenolic surfaces to our knowledge. Moreover, the modified membrane displayed rather high flux recovery after eight cycles of filtration while maintaining the original excellent separation efficiency. The modification process proposed in this study is almost independent of the nature of the substrate, and meets the demand for simple, inexpensive, rapid preparation of highly hydrophilic antifouling membranes, showing abroad application prospect for oil-water emulsion separation/treatment.


Assuntos
Membranas Artificiais , Taninos , Humanos , Emulsões , Biomineralização , Titânio
8.
Sci Total Environ ; 842: 156912, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753486

RESUMO

While transparent exopolymer particles (TEP) is a major foulant, and ethylene diamine tetraacetic acid (EDTA) is a strong chelating agent frequently used for fouling mitigation in membrane-based water treatment processes, little has been known about TEP-associated membrane fouling affected by EDTA. This work was performed to investigate roles of EDTA addition in TEP (Ca-alginate gel was used as a TEP model) associated fouling. It was interestingly found that, TEP had rather high specific filtration resistance (SFR) of 2.49 × 1015 m-1·kg-1, and SFR of TEP solution firstly decreased and then increased rapidly with EDTA concentration increase (0-1 mM). A series of characterizations suggested that EDTA took roles in SFR of TEP solution by means of changing TEP microstructure. The rather high SFR of TEP layer can be attributed to the big chemical potential gap during filtration described by the extended Flory-Huggins lattice theory. Initial EDTA addition disintegrated TEP structure by EDTA chelating calcium in TEP, inducing reduced SFR. Continuous EDTA addition decreased solution pH, resulting into no effective chelating and accumulation of EDTA on membrane surface, increasing SFR. It was suggested that factors increasing homogeneity of TEP gel will increase SFR, and vice versa. This study revealed the thermodynamic mechanism of TEP fouling behaviors affected by EDTA, and also demonstrated the importance of EDTA dosage and pH adjustment for TEP-associated fouling control.


Assuntos
Alginatos , Purificação da Água , Alginatos/química , Ácido Edético , Etilenos , Filtração , Membranas Artificiais
9.
Chemosphere ; 288(Pt 1): 132490, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34624347

RESUMO

It is of great significance to develop novel membranes with dual-function of simultaneously separating oil/water emulsion and degrading the contained water-miscible toxic organic components. To meet this requirement, a dual-functional Ni nanoparticles (NPs)@Ag/C-carbon nanotubes (CNTs) composite membrane was fabricated via electroless nickel plating strategy in this study. The as-prepared composite membrane possessed superhydrophilicity with water contact angle of 0° and splendid underwater oleophobic property with oil contact angle of 142°. When the membrane was applied for separation of surfactant stabilized oil-in-water emulsion, high permeate flux (about 97 L m-2·h-1 under gravity), oil rejection (about 98.8%) and antifouling property were achieved. Benefitting from the NiNPs@Ag/C-CNTs layer on membrane surface, the composite membrane exhibited high catalytic degradation activity for water-miscible toxic organic pollutant (4-nitrophenol) with addition of NaBH4 in a flow-through mode. Meanwhile, the NiNPs@Ag/C-CNTs composite membrane possessed excellent durability, which was verified by the good structural integrity even under ultrasonic treatment. The cost-efficiency, high separation and degradation performance of the prepared membrane suggested its great potential for treatment of oily wastewater.


Assuntos
Nanotubos de Carbono , Purificação da Água , Emulsões , Membranas Artificiais , Águas Residuárias
10.
J Colloid Interface Sci ; 589: 525-531, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33493862

RESUMO

There is a great interest to develop efficient fire-resistant materials. While ethylene vinyl acetate (EVA) is a widely used material, it suffers from the problem of relatively high inflammability which seriously hinders its usage as the product material with a high flame-retardant requirement. In this study, a strategy to combine aluminum hydroxide (ATH) and melamine cyanurate (MCA) with EVA was proposed to prepare the EVA composite materials with high flame resistance. It was found that slight addition of MCA could increase the lubricity of EVA and raise the compatibility between EVA and ATH. Thermogravimetric analysis (TGA) indicated that the thermal stability of EVA was improved via adding MCA, which was evidenced by the delayed thermal decomposition temperature. Moreover, the combustion results indicated that the EVA composite with 60 parts per hundred (phr) ATH and 40 phr MCA addition (EVA-60-40) displayed the optimal isolated layer favoring the fire resistance. In addition, the highest limiting oxygen index (LOI) value (27.5%) and V-0 rating of the EVA-60-40 as compared with other components indicated its incombustible nature. These results suggested the synergetic effect of ATH and MCA additions, the high efficiency of the proposed strategy and the wide application prospect of the produced EVA-ATH-MCA composite materials.

11.
Ecotoxicol Environ Saf ; 205: 111331, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32977287

RESUMO

In China, many studies have been carried out on pesticide residues in human milk, yet all of them are on organochlorine pesticides (OCPs) and mostly focused on large, economically developed cities. In this study, 27 pesticides including OCPs, pyrethroid pesticides (PYRs) and organophosphate pesticides (OPPs) in human milk were investigated in Jinhua, an inland and medium sized city in China. Method based on QuEChERS extraction and gas chromatography-mass spectrometer (GC-MS) determination was adopted to analyze the above pesticide residues. The influencing factors as well as the health risks were also evaluated. Results show that PYRs and OPPs in human milk samples were both undetectable. Regarding OCPs, the detection rate of hexachlorobenzene (HCB), ß-hexachlorocyclohexane (ß-HCH) and p,p'-dichlorodiphenyl-dichloroethylene (p,p'-DDE) were 83.6%, 36.4% and 58.2%, respectively, and their mean value were 29.4, 32.0 and 85.2 ng/g lipid, respectively. p,p'-DDE levels in human milk was significantly (p < 0.05) related to maternal age, but no association was detected between OCPs residues and other factors (living environment, dietary habit, living style, etc.), suggesting that OCPs in human milk in Jinhua were originated from nonspecific source. All estimated daily intake of pesticides (EDIpesticides) by infants were under the guideline suggested by Food and Agriculture Organization (FAO) and China Ministry of Health (CMH). Yet 9% of EDIsHCB and 16% of EDIsHCHs exceeded the guideline recommended by Health Canada. The associations between DDE residues and the delivery way as well as HCBs residues and the birth weight were seemly significant, yet the significance disappeared when consider age or gestational age as a cofounder, indicating that OCPs residue in mother's body in Jinhua has no obvious influence on fetus development and the delivery way.


Assuntos
Hidrocarbonetos Clorados/análise , Leite Humano/química , Organofosfatos/análise , Resíduos de Praguicidas/análise , Adulto , China , Cidades , Diclorodifenil Dicloroetileno/análise , Feminino , Hexaclorobenzeno/análise , Hexaclorocicloexano/análise , Humanos , Lactente , Inseticidas/análise , Idade Materna , Medição de Risco
12.
Chemosphere ; 250: 126236, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32088617

RESUMO

While polyphenol-based coating has been regarded as a promising alternative to functionalize membrane surface, it usually suffers from problems of low-efficient procedure and low utilization rate of the polyphenolic compounds, hindering its large-scale implementations. To solve these problems, this study provided a first report on inkjet printing of polyphenols (catechol (CA) or tannic acid (TA)) and sodium periodate (SP) on a polyvinylidene fluoride (PVDF) membrane to improve membrane performance. A series of analyses showed the efficient formation of homogenous films on the PVDF membrane surface and the improvement of hydrophilicity by the inkjet printing technique. The PVDF membranes decorated with the optimized polyphenolic coating exhibited a promising oil/water separation efficiency (higher than 99%) with a high average water permeation flux of 5.2 times higher than that of the pristine membrane. Meanwhile, the modified membranes illustrated a good stability under acidic conditions (pH = 2-7). The novel method proposed in this study is facile, cost-saving and environment-friendly. The advantages of the proposed method and the modified membranes demonstrated the great significance of the proposed method in practical applications.


Assuntos
Membranas Artificiais , Polifenóis/química , Interações Hidrofóbicas e Hidrofílicas , Polivinil , Impressão Tridimensional , Purificação da Água/métodos
13.
J Colloid Interface Sci ; 565: 546-554, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982721

RESUMO

While electroless nickel plating is considered as a promising candidate for fabrication of metallized polymer composite membranes with high performance, it suffers from problems of complex and high-cost pretreatment procedure, hindering its large-scale implementations. It is hypothesized that, inkjet printing integrated with electroless plating (ELP) can serve as a facile and economical membrane fabrication method to overcome above problems. The new method proposed in this study was processed by inkjet printing silver ions and pyrrole inks as catalytic layer followed by electroless Ni deposition on polypropylene (PP) membrane surface. Successful modification was verified by characterizing the surface morphology and elemental compositions of the membranes. In comparison to the pristine PP membrane, the PPy-Ag/Ni modified membrane demonstrated lower surface resistance (2.3 Ω), better hydrophilicity (44.9°) and higher pure water flux (1135.1 L m-2 h-1). When applying an external electric field (10.0 V cm-1), the average flux of the PPy-Ag/Ni membrane for yeast filtration increased from 107.8 to 137.7 L m-2 h-1, which was about 2.0 times higher than that of the pristine PP membrane. Meanwhile, the PPy-Ag/Ni membrane possessed a maximum flux recover rate when applied with an external electrical field. This work provided a facile and efficient approach for fabrication of composite conductive membranes.

14.
J Colloid Interface Sci ; 560: 273-283, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31670100

RESUMO

Inspired by the mussel adhesion mechanism, plant polyphenol tannic acid (TA) with abundant catechol groups and hydrophilic Jeffamine (JA) containing amino groups were used in a layer-by-layer (LBL) process to fabricate composite nanofiltration (NF) membranes in this study. Alternately immersing a polyacrylonitrile substrate into individual TA and JA buffer solutions could readily construct a NF membrane selective layer without any pre-treatment to the substrate. The optimised membrane showed a high pure water permeance of 37 L m-2 h-1 bar-1 whilst maintaining rejections higher than 90% towards various dyes with molecular weights ranging from 269 to 1017 g mol-1. Particularly, the obtained membrane exhibited excellent anti-fouling and long-term performance attributed to the hydrophilic membrane surface and covalent bonds in the selective layer. The novel strategy inherited the advantages of a mussel-inspired dopamine material but overcame its disadvantages. The results disclosed in this study not only provide a novel strategy to prepare composite NF membranes, but also facilitate the mussel-inspired LBL design of advanced materials for environmental applications.

15.
J Colloid Interface Sci ; 543: 64-75, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30779994

RESUMO

This study proposed a novel strategy to improve performance of inherently hydrophobic poly(vinylidene fluoride) (PVDF) membrane. The proposed strategy combined radiation grafting of poly(acrylic acid) (PAA) and electroless nickel plating. After a 5 min plating by using this modification strategy, the water contact angle of the modified membrane decreased from 75.5° to 47.1°, and water content ratio increased from 61.4% to 109.9%. The modified PVDF-g-PAA-Ag@Ni membrane presented 100% flux recovery and reduced fouling propensity when filtrating 0.1 g/L sodium alginate (SA) solution. Moreover, involvement of silver in this strategy provided evident antibacterial activity of the modified membranes. The ease and high efficiency of this strategy point towards the potential widespread applications of this strategy and the modified membranes.


Assuntos
Resinas Acrílicas/química , Antibacterianos/síntese química , Níquel/química , Polivinil/síntese química , Antibacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polivinil/química , Propriedades de Superfície
16.
Sci Rep ; 7(1): 2721, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28578428

RESUMO

This study provided the first attempt of grafting hydrophobic polyvinylidene fluoride (PVDF) membrane with hydrophilic hydroxyethyl acrylate (HEA) monomer via a radiation grafting method. This grafted membrane showed an enhanced hydrophilicity (10° decrease of water contact angle), water content ratio, settling ability and wettability compared to the control membrane. Interestingly, filtration tests showed an improved dependence of water flux of the grafted membrane on the solution pH in the acidic stage. Atomic force microscopy (AFM) analysis provided in-situ evidence that the reduced surface pore size of the grafted membrane with the solution pH governed such a dependence. It was proposed that, the reduced surface pore size was caused by the swelling of the grafted chain matrix, with the pH increase due to the chemical potential change. It was found that the grafted membrane showed a lower relative flux decreasing rate than the control membrane. Moreover, flux of the bovine serum albumin (BSA) solution was noticeably larger than that of pure water for the grafted membrane. Higher BSA flux than water flux can be explained by the effects of electric double layer compression on the polymeric swelling. This study not only provided a pH-sensitive PVDF membrane potentially useful for various applications, but also proposed novel mechanisms underlying the enhanced performance of the grafted membrane.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA