Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 69(13)2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38843812

RESUMO

Objective. In current clinical practice for quality assurance (QA), intensity modulated proton therapy (IMPT) fields are verified by measuring planar dose distributions at one or a few selected depths in a phantom. A QA device that measures full 3D dose distributions at high spatiotemporal resolution would be highly beneficial for existing as well as emerging proton therapy techniques such as FLASH radiotherapy. Our objective is to demonstrate feasibility of 3D dose measurement for IMPT fields using a dedicated multi-layer strip ionization chamber (MLSIC) device.Approach.Our developed MLSIC comprises a total of 66 layers of strip ion chamber (IC) plates arranged, alternatively, in thexandydirection. The first two layers each has 128 channels in 2 mm spacing, and the following 64 layers each has 32/33 IC strips in 8 mm spacing which are interconnected every eight channels. A total of 768-channel IC signals are integrated and sampled at a speed of 6 kfps. The MLSIC has a total of 19.2 cm water equivalent thickness and is capable of measurement over a 25 × 25 cm2field size. A reconstruction algorithm is developed to reconstruct 3D dose distribution for each spot at all depths by considering a double-Gaussian-Cauchy-Lorentz model. The 3D dose distribution of each beam is obtained by summing all spots. The performance of our MLSIC is evaluated for a clinical pencil beam scanning (PBS) plan.Main results.The dose distributions for each proton spot can be successfully reconstructed from the ionization current measurement of the strip ICs at different depths, which can be further summed up to a 3D dose distribution for the beam. 3D Gamma Index analysis indicates acceptable agreement between the measured and expected dose distributions from simulation, Zebra and MatriXX.Significance.The dedicated MLSIC is the first pseudo-3D QA device that can measure 3D dose distribution in PBS proton fields spot-by-spot.


Assuntos
Terapia com Prótons , Radiometria , Radiometria/instrumentação , Terapia com Prótons/instrumentação , Doses de Radiação , Dosagem Radioterapêutica , Prótons , Imagens de Fantasmas , Humanos , Radioterapia de Intensidade Modulada/instrumentação
2.
Phys Med Biol ; 68(2)2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36635788

RESUMO

Objective. Polycrystalline mercuric iodide photoconductive converters fabricated using particle-in-binder techniques (PIB HgI2) provide significantly more detected charge per x-ray interaction than from a-Se and CsI:Tl converters commonly used with active matrix flat-panel imagers (AMFPIs). This enhanced sensitivity makes PIB HgI2an interesting candidate for applications involving low x-ray exposures-since the relatively high levels of additive electronic noise exhibited by AMFPIs incorporating a-Se and CsI:Tl reduce detective quantum efficiency (DQE) performance under such conditions. A theoretical study is reported on an approach for addressing a major challenge impeding practical use of PIB HgI2converters-the high lag exhibited by the material (over 10%) which would lead to undesirable image artifacts in applications involving acquisition of consecutive images such as digital breast tomosynthesis.Approach. Charge transport modeling accounting for the trapping and release of holes (thought to be the primary contributor to lag) was used to examine signal properties, including lag, of pillar-supported Frisch grids embedded in the photoconductor for 100µm pitch AMFPI pixels. Performance was examined as a function of electrode voltage, grid pitch (center-to-center distance between neighboring grid wires) and the ratio of grid wire width to grid pitch.Main results. Optimum grid designs maximizing suppression of signal generated by hole transport, without significantly affecting the total signal due to electron and hole transport, were identified and MTF was determined. For the most favorable designs, additional modeling was used to determine DQE. The results indicate that, through judicious choice of grid design and operational conditions, first frame lag can be significantly reduced to below 1%-less than the low levels exhibited by a-Se. DQE performance is shown to be largely maintained as exposure decreases-which should help to maintain good image quality.Significance. Substantial reduction of lag in PIB HgI2converters via incorporation of Frisch grids has been demonstrated through modeling.


Assuntos
Mamografia , Compostos de Mercúrio , Mamografia/métodos , Radiografia , Iodetos/química , Desenho de Equipamento
3.
Phys Med Biol ; 66(15)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34252890

RESUMO

Active matrix, flat-panel imagers (AMFPIs) suffer from decreased detective quantum efficiency under conditions of low dose per image frame (such as for digital breast tomosynthesis, fluoroscopy and cone-beam CT) due to low signal compared to the additive electronic noise. One way to address this challenge is to introduce a high-gain x-ray converter called particle-in-binder mercuric iodide (PIB HgI2) which exhibits 3-10 times higher x-ray sensitivity compared to that of a-Se and CsI:Tl converters employed in commercial AMFPI systems. However, a remaining challenge for practical implementation of PIB HgI2is the high level of image lag, which is believed to largely originate from the trapping of holes. Towards addressing this challenge, this paper reports a theoretical investigation of the use of a Frisch grid structure embedded in the converter to suppress hole signal-which would be expected to reduce image lag. The grid acts as a third electrode sandwiched between a continuous top electrode and pixelated bottom electrodes having a 100µm pitch. Signal properties of such a detector are investigated as a function of VDR (the ratio of the voltage difference between the electrodes in the region below the grid to that above the grid), grid pitch (the center-to-center distance between two neighboring grid wires) andRGRID(the ratio of grid wire width to grid pitch) for mammographic x-ray energies. The results show that smaller grid pitch suppresses hole signal to a higher degree (up to ∼96%) while a larger gap between grid wires and higher VDR provide minimally impeded electron transport. Examination of the tradeoff between maximizing electron signal and minimizing hole signal indicates that a grid design having a grid pitch of 20µm withRGRIDof 50% and 65% provides hole signal suppression of ∼93% and ∼95% for VDR of 1 and 3, respectively.


Assuntos
Mamografia , Eletrodos , Desenho de Equipamento , Fluoroscopia , Radiografia , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA