Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(25): 29914-29926, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37314985

RESUMO

An approach to assess severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (and past infection) was developed. For virus detection, the SARS-CoV-2 virus nucleocapsid protein (NP) was targeted. To detect the NP, antibodies were immobilized on magnetic beads to capture the NPs, which were subsequently detected using rabbit anti-SARS-CoV-2 nucleocapsid antibodies and alkaline phosphatase (AP)-conjugated anti-rabbit antibodies. A similar approach was used to assess SARS-CoV-2-neutralizing antibody levels by capturing spike receptor-binding domain (RBD)-specific antibodies utilizing RBD protein-modified magnetic beads and detecting them using AP-conjugated anti-human IgG antibodies. The sensing mechanism for both assays is based on cysteamine etching-induced fluorescence quenching of bovine serum albumin-protected gold nanoclusters where cysteamine is generated in proportion to the amount of either SARS-CoV-2 virus or anti-SARS-CoV-2 receptor-binding domain-specific immunoglobulin antibodies (anti-RBD IgG antibodies). High sensitivity can be achieved in 5 h 15 min for the anti-RBD IgG antibody detection and 6 h 15 min for virus detection, although the assay can be run in "rapid" mode, which takes 1 h 45 min for the anti-RBD IgG antibody detection and 3 h 15 min for the virus. By spiking the anti-RBD IgG antibodies and virus in serum and saliva, we demonstrate that the assay can detect the anti-RBD IgG antibodies with a limit of detection (LOD) of 4.0 and 2.0 ng/mL in serum and saliva, respectively. For the virus, we can achieve an LOD of 8.5 × 105 RNA copies/mL and 8.8 × 105 RNA copies/mL in serum and saliva, respectively. Interestingly, this assay can be easily modified to detect myriad analytes of interest.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Coelhos , COVID-19/diagnóstico , Soroalbumina Bovina , Cisteamina , Anticorpos Antivirais , Imunoglobulina G
2.
Cancer Manag Res ; 15: 217-231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873253

RESUMO

Background: Tumor protein p63 (TP63) has been proven to play a role as a tumor suppressor in some human cancers, including non-small cell lung cancer (NSCLC). This study aimed to investigate the mechanism of TP63 and analyze the underlying pathway dysregulating TP63 in NSCLC. Methods: RT-qPCR and Western blotting assays were used to determine gene expression in NSCLC cells. The luciferase reporter assay was performed to explore the transcriptional regulation. Flow cytometry was used to analyze the cell cycle and cell apoptosis. Transwell and CCK-8 assays were performed to test cell invasion and cell proliferation, respectively. Results: GAS5 interacted with miR-221-3p, and its expression was significantly reduced in NSCLC. GAS5, as a molecular sponge, upregulated the mRNA and protein levels of TP63 by inhibiting miR-221-3p in NSCLC cells. The upregulation of GAS5 inhibited cell proliferation, apoptosis, and invasion, which was partially reversed by the knockdown of TP63. Interestingly, we found that GAS5-induced TP63 upregulation promoted tumor chemotherapeutic sensitivity to cisplatin therapy in vivo and in vitro. Conclusion: Our results revealed the mechanism by which GAS5 interacts with miR-221-3p to regulate TP63, and targeting GAS5/miR-221-3p/TP63 may be a potential therapeutic strategy for NSCLC cells.

3.
Mol Cancer Res ; 20(12): 1763-1775, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36074102

RESUMO

Non-small cell lung cancer (NSCLC) is a well-known global health concern. TFAP4 has been reported to function as an oncogene. This study sought to investigate the molecular mechanism of TFAP4 in NSCLC development. Significantly highly-expressed gene IGF2BP1 was screened on online databases and its downstream gene TK1 was predicted. IGF2BP1 promoter sequence was identified. The binding site of TFAP4 and IGF2BP1 was predicted. The expression correlations among TFAP4, IGF2BP1, and TK1 were confirmed. The correlations between TFAP4, IGF2BP1, TK1, and NSCLC prognosis were predicted. NSCLC and paracancerous tissues were collected. The expressions of TFAP4, IGF2BP1, and TK1 were detected. NSCLC cell proliferation, migration, invasion, and apoptosis were detected. The binding of TFAP4 to the IGF2BP1 promoter was verified. m6A modification of TK1 mRNA was detected. The correlation between IGF2BP1 and TK1 was confirmed. A subcutaneous tumor xenograft model was established to validate the effect of TFAP4 in vivo. IGF2BP1 was highly expressed in NSCLC tissues and cells. IGF2BP1 knockdown repressed NSCLC cell proliferation, migration, and invasion and facilitated apoptosis. Mechanically, TFAP4 transcriptionally activated IGF2BP1. IGF2BP1 stabilized TK1 expression via m6A modification and promoted NSCLC cell proliferation, migration, and invasion. In vivo experiments confirmed that TFAP4 knockdown suppressed tumor growth by downregulating IGF2BP1/TK1. IMPLICATIONS: Our findings revealed that TFAP4 activated IGF2BP1 and facilitated NSCLC progression by stabilizing TK1 expression via m6A modification, which offered new insights into the diagnosis and treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/patologia , Linhagem Celular Tumoral , Apoptose/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética
4.
Cell Death Discov ; 7(1): 238, 2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504061

RESUMO

Long noncoding RNAs (lncRNAs) are critical players during cancer progression. Nevertheless, the effect of most lncRNAs in lung cancer (LC) remains unclear. We aimed to explore the role of LINC01342 in LC development through the microRNA-508-5p (miR-508-5p)/cysteine-rich secretory protein 3 (CRISP3) axis. LINC01342, miR-508-5p, and CRISP3 expression in clinical samples and cell lines were determined, and their correlations in LC were analyzed. The prognostic role of LINC01342 in LC patients was evaluated. LC cells were screened and, respectively, transfected to alter the expression of LINC01342, miR-508-5p, and CRISP3. Then, proliferation, migration, invasion, and apoptosis of transfected LC cells were determined, and the in vivo tumor growth was observed as well. Binding relationships between LINC01342 and miR-508-5p, and between miR-508-5p and CRISP3 were identified. LINC01342 and CRISP3 were upregulated and miR-508-5p was downregulated in LC tissues and cells. High LINC01342 expression indicated a poor prognosis of LC patients. The LINC01342/CRISP3 silencing or miR-508-5p elevation inhibited proliferation, migration, and invasion of LC cells and promoted LC cell apoptosis, and also suppressed the in vivo tumor growth. LINC01342 bound to miR-508-5p and miR-508-5p targeted CRISP3. LINC01342 plays a prognostic role in LC and LINC01342 silencing upregulates miR-508-5p to inhibit the progression of LC by reducing CRISP3.

5.
Respir Res ; 21(1): 235, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938459

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is one of the major types of lung cancer, which is a prevalent human disease all over the world. LncRNA LINC01503 is a super-enhancer-driven long non-coding RNA that is dysregulated in several types of human cancer. However, its role in NSCLC remains unknown. METHODS: Thirty NSCLC patients were recruited between April 2012 and April 2016. Luciferase reporter assay, qRT-PCR, Cell Counting Kit-8 (CCK-8), Transwell migration assay, RNA pull-down assay, western blotting, 5-ethynyl-29-deoxyuridine (EdU) assays, and flow cytometry were utilized to characterize the roles and relationships among LINC01503, miR-342-3p, and LASP1 in NSCLC. The transplanted mouse model was built to examine their biological functions in vivo. RESULTS: We demonstrated that the expression of lncRNA LINC01503 and LIM and SH3 domain protein 1 (LASP1) were upregulated and miR-342-3p was downregulated in NSCLC samples and cell lines. Functional experiments revealed that inhibiting the expression of LINC01503 or over-expression of miR-342-3p inhibited NSCLC growth and metastasis both in vitro and in vivo. In addition, LINC01503 could bind to miR-342-3p and affect the expression of LASP1. CONCLUSION: These results provide a comprehensive analysis of the roles of LINC01503 as a competing endogenous RNA (ceRNA) in NSCLC progression.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas do Citoesqueleto/biossíntese , Regulação Neoplásica da Expressão Gênica , Proteínas com Domínio LIM/biossíntese , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/fisiologia , Proteínas do Citoesqueleto/genética , Feminino , Humanos , Proteínas com Domínio LIM/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
6.
Int J Oncol ; 57(4): 967-979, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32945379

RESUMO

Drug resistance is a major obstacle in the therapy of malignant tumors, including non­small cell lung cancer (NSCLC). Long non­coding RNAs (lncRNAs) have been demonstrated to be involved in chemoresistance. The present study aimed to investigate the role of lung cancer­associated transcript 1 (LUCAT1) in cisplatin (DDP) resistance in NSCLC. By using reverse transcription­quantitative polymerase chain reaction (RT­qPCR), it was found that the expression of LUCAT1 was elevated and that of microRNA­514a­3p (miR­514a­3p) was decreased in DDP­resistant NSCLC tissues and cells. Functionally, LUCAT1 upregulation enhanced cisplatin resistance by promoting the viability, autophagy and metastasis, and inhibiting the apoptosis of NSCLC cells, as demonstrated by Cell Counting kit­8 (CCK­8) assay, western blot analysis, Transwell assay and flow cytometric analysis. LUCAT1 was identified as a sponge of miR­514a­3p and uncoordinated­51­like kinase 1 (ULK1) was proven to be a target gene of miR­514a­3p by bioinformatics analysis, dual­luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The enhancing effect of miR­514a­3p on cisplatin sensitivity was reversed by the elevation of LUCAT1. ULK1 knockdown suppressed cisplatin resistance, while this effect was attenuated by miR­514a­3p inhibition. Moreover, LUCAT1 positively regulated ULK1 expression by targeting miR­514a­3p. In addition, LUCAT1 knockdown suppressed tumor growth in vivo. On the whole, the findings of the present study demonstrate that LUCAT1 contributes to the resistance of NSCLC cells to cisplatin by regulating the miR­514a­3p/ULK1 axis, elucidating a novel regulatory network in cisplatin resistance in NSCLC.


Assuntos
Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Cisplatino/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Pulmonares/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/agonistas , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , Transdução de Sinais , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Physiol Biochem ; 50(1): 92-107, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30278450

RESUMO

BACKGROUND/AIMS: To investigate the clinical significance and functional mechanisms of membrane-associated RING-CH protein 9 (MARCH9) in lung adenocarcinoma (LAC). METHODS: Immunohistochemistry staining was performed to explore the expression of MARCH9 in LAC tissues and adjacent normal lung tissues. Patients' prognosis was evaluated using overall survival. The prognostic role of MARCH9 was tested with univariate and multivariate analyses. To confirm the effect of MARCH9 in cell proliferation and invasion, overexpression of MARCH9 was induced in two LAC cell lines. Cell cycle, apoptosis, migration, invasion, and immunoprecipitation experiments were performed to further explore the signaling pathways involved. RESULTS: Analysis of a series of 143 clinical samples revealed that MARCH9 was down-regulated in tumor tissues compared with normal lung tissues, and this was closely associated with lymph node metastasis (P = 0.004). Univariate and multivariate analyses indicated that MARCH9 was an independent prognostic biomarker for LAC; low MARCH9 expression indicated poor overall survival. Cellular studies with A549 and H1299 cells demonstrated that MARCH9 can attenuate tumor migration and invasion but had little effect on cell cycle or apoptosis. Moreover, an interaction between MARCH9 and ICAM-1 protein was identified, and overexpression of MARCH9 was found to attenuate the oncogenic effect of ICAM-1, suggesting that MARCH9 may inhibit tumor progression by downregulating ICAM-1 signaling. CONCLUSION: MARCH9 downregulation in LAC tissues correlated with poor clinical outcomes. MARCH9 may serve as a novel biomarker and potential therapeutic target for LAC.


Assuntos
Adenocarcinoma/patologia , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Adulto , Idoso , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação para Baixo , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidade , Metástase Linfática , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética
11.
Artif Cells Nanomed Biotechnol ; 46(sup3): S383-S388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30095026

RESUMO

BACKGROUND: The dysfunction of p53-mediated apoptosis is the key to tumorigenesis, so most gene therapy programs concentrate on improving the expressing level of wild-type p53 in tumour cells. However, the p53 gene therapy has not yielded satisfactory results in tumours with normal p53 function. A new member of p53 gene family-p63, has provided new hopes. TAp63γ (p51A) resembles p53 the most, thus it might become a new promising therapeutic gene of tumours. METHODS: We designed the primer pairs of p51A and amplified the p51A cDNA sequence from human skeletal muscle poly A + RNA to construct recombinant plasmid. It was then transfected into human lung adenocarcinoma cell lines A549 and NCI-H1299. RT-PCR, Western blot, MTT, flow cytometry and colony formation assay were used to analyse the growth and chemosensitivity of tumour cells. RESULTS: The recombinant plasmid was constructed and transfected into tumour cells successfully. After transfection, p51A mRNA, P51A protein and P21 protein level raised significantly. Cell proliferation capacity and colony formation rate decreased while cell apoptosis rate and chemosensitivity to cisplatin and adriamycin increased significantly. CONCLUSIONS: Exogenous p51A gene can increase its expression in A549 and NCI-H1299 cells, suppress cell growth and induce cell apoptosis. Moreover, it can also cooperate with chemotherapy and reduce the dose and side-effect. p51A gene can suppress tumours in spite of p53 status and p21 gene might be involved. It might become a new promising therapeutic gene of tumours, which will make up for the limitation of p53 gene therapy.


Assuntos
Adenocarcinoma de Pulmão/metabolismo , Apoptose , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares/metabolismo , Fatores de Transcrição/biossíntese , Proteínas Supressoras de Tumor/biossíntese , Células A549 , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Inibidor de Quinase Dependente de Ciclina p21/biossíntese , Inibidor de Quinase Dependente de Ciclina p21/genética , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Fatores de Transcrição/genética , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/genética
12.
Cell Cycle ; 17(14): 1772-1783, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30010468

RESUMO

Although epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) gefitinib has exhibited notable clinical efficacy in non-small cell lung cancer (NSCLC) patients. However, its therapeutic efficacy is ultimately limited by the development of gefitinib resistance. The present study aimed to investigate the effects of the long non-coding RNA, RHPN1-AS1 on gefitinib resistance in NSCLC and explore the underlying mechanisms. In this study, RHPN1-AS1 was observed to be downregulated in gefitinib resistant patients and NSCLC cell lines. Besides, decreased expression of RHPN1-AS1 was found to be associated with poor prognosis of NSCLC patients. RHPN1-AS1 knockdown conferred gefitinib resistance to gefitinib sensitive NSCLC cells, whereas the overexpression of RHPN1-AS1 sensitized gefitinib resistant NSCLC cells to gefitinib treatment. Mechanistically, RHPN1-AS1 was found to positively regulate the expression of TNFSF12 by directly interacting with miR-299-3p. Collectively, RHPN1-AS1 modulates gefitinib resistance through miR-299-3p/TNFSF12 pathway in NSCLC. Our findings indicate that RHPN1-AS1 may serve as not only a prognostic biomarker for gefitinib resistance but also as a promising therapeutic biomarker and target for the treatment of NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Citocina TWEAK/metabolismo , Regulação para Baixo/genética , Resistencia a Medicamentos Antineoplásicos/genética , Gefitinibe/farmacologia , Neoplasias Pulmonares/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Prognóstico , RNA Longo não Codificante/genética
13.
Cell Physiol Biochem ; 41(6): 2221-2229, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28448993

RESUMO

BACKGROUND/AIMS: Long non-coding RNAs (lncRNAs) are key players in the development and progression of human cancers. The lncRNA XIST (X-inactive specific transcript) has been shown to be upregulated in human non-small cell lung cancer (NSCLC); however, its role and molecular mechanisms in NSCLC cell progression remain unclear. METHODS: qRT-PCR was conducted to assess the expression of XIST and miR-186. Cell proliferation was detected using MTT assay. Cell invasion and migration were evaluated using transwell assay. Cell cycle distribution and apoptosis rates were analyzed by flow cytometry. Luciferase reporter assay was used to identify the direct regulation of XIST and miR-186. A RNA immunoprecipitation was used to analyze whether XIST was associated with the RNA-induced silencing complex (RISC). RESULTS: We confirmed that XIST was upregulated in NSCLC cell lines and tissues. Functionally, XIST knockdown inhibited cancer cell proliferation and invasion, and induced apoptosis in vitro, and suppressed subcutaneous tumor growth in vivo. Mechanistic investigations revealed a reciprocal repressive interaction between XIST and miR-186-5p. Furthermore, we showed that miR-186-5p has a binding site for XIST. Our data also indicated that XIST and miR-186-5p are likely in the same RNA induced silencing complex. CONCLUSION: Together, our data revealed that XIST knockdown confers suppressive function in NSCLC and XIST may be a novel therapeutic marker in this disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Células A549 , Animais , Antagomirs/metabolismo , Sequência de Bases , Sítios de Ligação , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Genes Reporter , Células HT29 , Humanos , Neoplasias Pulmonares/genética , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA