Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Genet Epidemiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686586

RESUMO

Numerous studies over the past generation have identified germline variants that increase specific cancer risks. Simultaneously, a revolution in sequencing technology has permitted high-throughput annotations of somatic genomes characterizing individual tumors. However, examining the relationship between germline variants and somatic alteration patterns is hugely challenged by the large numbers of variants in a typical tumor, the rarity of most individual variants, and the heterogeneity of tumor somatic fingerprints. In this article, we propose statistical methodology that frames the investigation of germline-somatic relationships in an interpretable manner. The method uses meta-features embodying biological contexts of individual somatic alterations to implicitly group rare mutations. Our team has used this technique previously through a multilevel regression model to diagnose with high accuracy tumor site of origin. Herein, we further leverage topic models from computational linguistics to achieve interpretable lower-dimensional embeddings of the meta-features. We demonstrate how the method can identify distinctive somatic profiles linked to specific germline variants or environmental risk factors. We illustrate the method using The Cancer Genome Atlas whole-exome sequencing data to characterize somatic tumor fingerprints in breast cancer patients with germline BRCA1/2 mutations and in head and neck cancer patients exposed to human papillomavirus.

2.
Biometrics ; 80(2)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38682463

RESUMO

Inferring the cancer-type specificities of ultra-rare, genome-wide somatic mutations is an open problem. Traditional statistical methods cannot handle such data due to their ultra-high dimensionality and extreme data sparsity. To harness information in rare mutations, we have recently proposed a formal multilevel multilogistic "hidden genome" model. Through its hierarchical layers, the model condenses information in ultra-rare mutations through meta-features embodying mutation contexts to characterize cancer types. Consistent, scalable point estimation of the model can incorporate 10s of millions of variants across thousands of tumors and permit impressive prediction and attribution. However, principled statistical inference is infeasible due to the volume, correlation, and noninterpretability of mutation contexts. In this paper, we propose a novel framework that leverages topic models from computational linguistics to effectuate dimension reduction of mutation contexts producing interpretable, decorrelated meta-feature topics. We propose an efficient MCMC algorithm for implementation that permits rigorous full Bayesian inference at a scale that is orders of magnitude beyond the capability of existing out-of-the-box inferential high-dimensional multi-class regression methods and software. Applying our model to the Pan Cancer Analysis of Whole Genomes dataset reveals interesting biological insights including somatic mutational topics associated with UV exposure in skin cancer, aging in colorectal cancer, and strong influence of epigenome organization in liver cancer. Under cross-validation, our model demonstrates highly competitive predictive performance against blackbox methods of random forest and deep learning.


Assuntos
Algoritmos , Teorema de Bayes , Mutação , Neoplasias , Humanos , Neoplasias/genética , Modelos Estatísticos , Neoplasias Cutâneas/genética
3.
Am J Hum Genet ; 111(2): 227-241, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38232729

RESUMO

Distinguishing genomic alterations in cancer-associated genes that have functional impact on tumor growth and disease progression from the ones that are passengers and confer no fitness advantage have important clinical implications. Evidence-based methods for nominating drivers are limited by existing knowledge on the oncogenic effects and therapeutic benefits of specific variants from clinical trials or experimental settings. As clinical sequencing becomes a mainstay of patient care, applying computational methods to mine the rapidly growing clinical genomic data holds promise in uncovering functional candidates beyond the existing knowledge base and expanding the patient population that could potentially benefit from genetically targeted therapies. We propose a statistical and computational method (MAGPIE) that builds on a likelihood approach leveraging the mutual exclusivity pattern within an oncogenic pathway for identifying probabilistically both the specific genes within a pathway and the individual mutations within such genes that are truly the drivers. Alterations in a cancer-associated gene are assumed to be a mixture of driver and passenger mutations with the passenger rates modeled in relationship to tumor mutational burden. We use simulations to study the operating characteristics of the method and assess false-positive and false-negative rates in driver nomination. When applied to a large study of primary melanomas, the method accurately identifies the known driver genes within the RTK-RAS pathway and nominates several rare variants as prime candidates for functional validation. A comprehensive evaluation of MAGPIE against existing tools has also been conducted leveraging the Cancer Genome Atlas data.


Assuntos
Biologia Computacional , Neoplasias , Humanos , Biologia Computacional/métodos , Funções Verossimilhança , Neoplasias/genética , Genômica/métodos , Mutação/genética , Algoritmos
4.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37786694

RESUMO

Distinguishing genomic alterations in cancer genes that have functional impact on tumor growth and disease progression from the ones that are passengers and confer no fitness advantage has important clinical implications. Evidence-based methods for nominating drivers are limited by existing knowledge on the oncogenic effects and therapeutic benefits of specific variants from clinical trials or experimental settings. As clinical sequencing becomes a mainstay of patient care, applying computational methods to mine the rapidly growing clinical genomic data holds promise in uncovering novel functional candidates beyond the existing knowledge-base and expanding the patient population that could potentially benefit from genetically targeted therapies. We propose a statistical and computational method (MAGPIE) that builds on a likelihood approach leveraging the mutual exclusivity pattern within an oncogenic pathway for identifying probabilistically both the specific genes within a pathway and the individual mutations within such genes that are truly the drivers. Alterations in a cancer gene are assumed to be a mixture of driver and passenger mutations with the passenger rates modeled in relationship to tumor mutational burden. A limited memory BFGS algorithm is used to facilitate large scale optimization. We use simulations to study the operating characteristics of the method and assess false positive and false negative rates in driver nomination. When applied to a large study of primary melanomas the method accurately identified the known driver genes within the RTK-RAS pathway and nominated a number of rare variants with previously unknown biological and clinical relevance as prime candidates for functional validation.

5.
Cell Rep Methods ; 3(8): 100546, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37671017

RESUMO

We present TopicFlow, a computational framework for flow cytometry data analysis of patient blood samples for the identification of functional and dynamic topics in circulating T cell population. This framework applies a Latent Dirichlet Allocation (LDA) model, adapting the concept of topic modeling in text mining to flow cytometry. To demonstrate the utility of our method, we conducted an analysis of ∼17 million T cells collected from 138 peripheral blood samples in 51 patients with melanoma undergoing treatment with immune checkpoint inhibitors (ICIs). Our study highlights three latent dynamic topics identified by LDA: a T cell exhaustion topic that independently recapitulates the previously identified LAG-3+ immunotype associated with ICI resistance, a naive topic and its association with immune-related toxicity, and a T cell activation topic that emerges upon ICI treatment. Our approach can be broadly applied to mine high-parameter flow cytometry data for insights into mechanisms of treatment response and toxicity.


Assuntos
Neoplasias , Linfócitos T , Humanos , Imunoterapia , Análise de Dados , Mineração de Dados , Citometria de Fluxo
6.
J Pathol ; 261(3): 349-360, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37667855

RESUMO

As predictive biomarkers of response to immune checkpoint inhibitors (ICIs) remain a major unmet clinical need in patients with urothelial carcinoma (UC), we sought to identify tissue-based immune biomarkers of clinical benefit to ICIs using multiplex immunofluorescence and to integrate these findings with previously identified peripheral blood biomarkers of response. Fifty-five pretreatment and 12 paired on-treatment UC specimens were identified from patients treated with nivolumab with or without ipilimumab. Whole tissue sections were stained with a 12-plex mIF panel, including CD8, PD-1/CD279, PD-L1/CD274, CD68, CD3, CD4, FoxP3, TCF1/7, Ki67, LAG-3, MHC-II/HLA-DR, and pancytokeratin+SOX10 to identify over three million cells. Immune tissue densities were compared to progression-free survival (PFS) and best overall response (BOR) by RECIST version 1.1. Correlation coefficients were calculated between tissue-based and circulating immune populations. The frequency of intratumoral CD3+ LAG-3+ cells was higher in responders compared to nonresponders (p = 0.0001). LAG-3+ cellular aggregates were associated with response, including CD3+ LAG-3+ in proximity to CD3+ (p = 0.01). Exploratory multivariate modeling showed an association between intratumoral CD3+ LAG-3+ cells and improved PFS independent of prognostic clinical factors (log HR -7.0; 95% confidence interval [CI] -12.7 to -1.4), as well as established biomarkers predictive of ICI response (log HR -5.0; 95% CI -9.8 to -0.2). Intratumoral LAG-3+ immune cell populations warrant further study as a predictive biomarker of clinical benefit to ICIs. Differences in LAG-3+ lymphocyte populations across the intratumoral and peripheral compartments may provide complementary information that could inform the future development of multimodal composite biomarkers of ICI response. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.

7.
J Immunother Cancer ; 11(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37487667

RESUMO

BACKGROUND: Single-agent PD-(L)1 blockade (IO) alone or in combination with chemotherapy (Chemotherapy-IO) is approved first-line therapies in patients with advanced lung adenocarcinomas (LUADs) with PD-L1 expression ≥1%. These regimens have not been compared prospectively. The primary objective was to compare first-line efficacies of single-agent IO to Chemotherapy-IO in patients with advanced LUADs. Secondary objectives were to explore if clinical, pathological, and genomic features were associated with differential response to Chemotherapy-IO versus IO. METHODS: This was a multicenter retrospective cohort study. Inclusion criteria were patients with advanced LUADs with tumor PD-L1 ≥1% treated with first-line Chemotherapy-IO or IO. To compare the first-line efficacies of single-agent IO to Chemotherapy-IO, we conducted inverse probability weighted Cox proportional hazards models using estimated propensity scores. RESULTS: The cohort analyzed included 866 patients. Relative to IO, Chemotherapy-IO was associated with improved objective response rate (ORR) (44% vs 35%, p=0.007) and progression-free survival (PFS) in patients with tumor PD-L1≥1% (HR 0.84, 95% CI 0.72 to 0.97, p=0.021) or PD-L1≥50% (ORR 55% vs 38%, p<0.001; PFS HR 0.68, 95% CI 0.53 to 0.87, p=0.002). Using propensity-adjusted analyses, only never-smokers in the PD-L1≥50% subgroup derived a differential survival benefit from Chemotherapy-IO vs IO (p=0.013). Among patients with very high tumor PD-L1 expression (≥90%), there were no differences in outcome between treatment groups. No genomic factors conferred differential survival benefit to Chemotherapy-IO versus IO. CONCLUSIONS: While the addition of chemotherapy to PD-(L)1 blockade increases the probability of initial response, never-smokers with tumor PD-L1≥50% comprise the only population identified that derived an apparent survival benefit with treatment intensification.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Estudos de Coortes , Antígeno B7-H1 , Estudos Retrospectivos
8.
JCO Precis Oncol ; 7: e2300030, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37384866

RESUMO

PURPOSE: With the recent approval of the KRAS G12C inhibitor sotorasib for patients with advanced KRAS G12C-mutant non-small cell lung cancer (NSCLC), there is a new need to identify factors associated with activity and toxicity among patients treated in routine practice. MATERIALS AND METHODS: We conducted a multicenter retrospective study of patients treated with sotorasib outside of clinical trials to identify factors associated with real-world progression free survival (rwPFS), overall survival (OS), and toxicity. RESULTS: Among 105 patients with advanced KRAS G12C-mutant NSCLC treated with sotorasib, treatment led to a 5.3-month median rwPFS, 12.6-month median OS, and 28% real-world response rate. KEAP1 comutations were associated with shorter rwPFS and OS (rwPFS hazard ratio [HR], 3.19; P = .004; OS HR, 4.10; P = .003); no significant differences in rwPFS or OS were observed across TP53 (rwPFS HR, 1.10; P = .731; OS HR, 1.19; P = .631) or STK11 (rwPFS HR, 1.66; P = .098; OS HR, 1.73; P = .168) comutation status. Notably, almost all patients who developed grade 3 or higher treatment-related adverse events (G3+ TRAEs) had previously been treated with anti-PD-(L)1 therapy. Among these patients, anti-PD-(L)1 therapy exposure within 12 weeks of sotorasib was strongly associated with G3+ TRAEs (P < .001) and TRAE-related sotorasib discontinuation (P = .014). Twenty-eight percent of patients with recent anti-PD-(L)1 therapy exposure experienced G3+ TRAEs, most commonly hepatotoxicity. CONCLUSION: Among patients treated with sotorasib in routine practice, KEAP1 comutations were associated with resistance and recent anti-PD-(L)1 therapy exposure was associated with toxicity. These observations may help guide use of sotorasib in the clinic and may help inform the next generation of KRAS G12C-targeted clinical trials.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína 1 Associada a ECH Semelhante a Kelch , Proteínas Proto-Oncogênicas p21(ras)/genética , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Fator 2 Relacionado a NF-E2 , Genômica
9.
bioRxiv ; 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37162890

RESUMO

Immune checkpoint inhibitors (ICIs), now mainstays in the treatment of cancer treatment, show great potential but only benefit a subset of patients. A more complete understanding of the immunological mechanisms and pharmacodynamics of ICI in cancer patients will help identify the patients most likely to benefit and will generate knowledge for the development of next-generation ICI regimens. We set out to interrogate the early temporal evolution of T cell populations from longitudinal single-cell flow cytometry data. We developed an innovative statistical and computational approach using a Latent Dirichlet Allocation (LDA) model that extends the concept of topic modeling used in text mining. This powerful unsupervised learning tool allows us to discover compositional topics within immune cell populations that have distinct functional and differentiation states and are biologically and clinically relevant. To illustrate the model's utility, we analyzed ∼17 million T cells obtained from 138 pre- and on-treatment peripheral blood samples from a cohort of melanoma patients treated with ICIs. We identified three latent dynamic topics: a T-cell exhaustion topic that recapitulates a LAG3+ predominant patient subgroup with poor clinical outcome; a naive topic that shows association with immune-related toxicity; and an immune activation topic that emerges upon ICI treatment. We identified that a patient subgroup with a high baseline of the naïve topic has a higher toxicity grade. While the current application is demonstrated using flow cytometry data, our approach has broader utility and creates a new direction for translating single-cell data into biological and clinical insights.

10.
Clin Cancer Res ; 29(17): 3418-3428, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37223888

RESUMO

PURPOSE: We describe the clinical and genomic landscape of the non-small cell lung cancer (NSCLC) cohort of the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) Biopharma Collaborative (BPC). EXPERIMENTAL DESIGN: A total of 1,846 patients with NSCLC whose tumors were sequenced from 2014 to 2018 at four institutions participating in AACR GENIE were randomly chosen for curation using the PRISSMM data model. Progression-free survival (PFS) and overall survival (OS) were estimated for patients treated with standard therapies. RESULTS: In this cohort, 44% of tumors harbored a targetable oncogenic alteration, with EGFR (20%), KRAS G12C (13%), and oncogenic fusions (ALK, RET, and ROS1; 5%) as the most frequent. Median OS (mOS) on first-line platinum-based therapy without immunotherapy was 17.4 months [95% confidence interval (CI), 14.9-19.5 months]. For second-line therapies, mOS was 9.2 months (95% CI, 7.5-11.3 months) for immune checkpoint inhibitors (ICI) and 6.4 months (95% CI, 5.1-8.1 months) for docetaxel ± ramucirumab. In a subset of patients treated with ICI in the second-line or later setting, median RECIST PFS (2.5 months; 95% CI, 2.2-2.8) and median real-world PFS based on imaging reports (2.2 months; 95% CI, 1.7-2.6) were similar. In exploratory analysis of the impact of tumor mutational burden (TMB) on survival on ICI treatment in the second-line or higher setting, TMB z-score harmonized across gene panels was associated with improved OS (univariable HR, 0.85; P = 0.03; n = 247 patients). CONCLUSIONS: The GENIE BPC cohort provides comprehensive clinicogenomic data for patients with NSCLC, which can improve understanding of real-world patient outcomes.


Assuntos
Antineoplásicos Imunológicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas Tirosina Quinases , Antineoplásicos Imunológicos/uso terapêutico , Proteínas Proto-Oncogênicas , Genômica
11.
PLoS One ; 18(4): e0269324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37011054

RESUMO

INTRODUCTION: We are conducting a multicenter study to identify classifiers predictive of disease-specific survival in patients with primary melanomas. Here we delineate the unique aspects, challenges, and best practices for optimizing a study of generally small-sized pigmented tumor samples including primary melanomas of at least 1.05mm from AJTCC TNM stage IIA-IIID patients. We also evaluated tissue-derived predictors of extracted nucleic acids' quality and success in downstream testing. This ongoing study will target 1,000 melanomas within the international InterMEL consortium. METHODS: Following a pre-established protocol, participating centers ship formalin-fixed paraffin embedded (FFPE) tissue sections to Memorial Sloan Kettering Cancer Center for the centralized handling, dermatopathology review and histology-guided coextraction of RNA and DNA. Samples are distributed for evaluation of somatic mutations using next gen sequencing (NGS) with the MSK-IMPACTTM assay, methylation-profiling (Infinium MethylationEPIC arrays), and miRNA expression (Nanostring nCounter Human v3 miRNA Expression Assay). RESULTS: Sufficient material was obtained for screening of miRNA expression in 683/685 (99%) eligible melanomas, methylation in 467 (68%), and somatic mutations in 560 (82%). In 446/685 (65%) cases, aliquots of RNA/DNA were sufficient for testing with all three platforms. Among samples evaluated by the time of this analysis, the mean NGS coverage was 249x, 59 (18.6%) samples had coverage below 100x, and 41/414 (10%) failed methylation QC due to low intensity probes or insufficient Meta-Mixed Interquartile (BMIQ)- and single sample (ss)- Noob normalizations. Six of 683 RNAs (1%) failed Nanostring QC due to the low proportion of probes above the minimum threshold. Age of the FFPE tissue blocks (p<0.001) and time elapsed from sectioning to co-extraction (p = 0.002) were associated with methylation screening failures. Melanin reduced the ability to amplify fragments of 200bp or greater (absent/lightly pigmented vs heavily pigmented, p<0.003). Conversely, heavily pigmented tumors rendered greater amounts of RNA (p<0.001), and of RNA above 200 nucleotides (p<0.001). CONCLUSION: Our experience with many archival tissues demonstrates that with careful management of tissue processing and quality control it is possible to conduct multi-omic studies in a complex multi-institutional setting for investigations involving minute quantities of FFPE tumors, as in studies of early-stage melanoma. The study describes, for the first time, the optimal strategy for obtaining archival and limited tumor tissue, the characteristics of the nucleic acids co-extracted from a unique cell lysate, and success rate in downstream applications. In addition, our findings provide an estimate of the anticipated attrition that will guide other large multicenter research and consortia.


Assuntos
Melanoma , MicroRNAs , Ácidos Nucleicos , Humanos , Fixação de Tecidos/métodos , MicroRNAs/análise , Melanoma/genética , DNA/genética , Inclusão em Parafina/métodos , Formaldeído
12.
JCO Precis Oncol ; 7: e2200439, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36926987

RESUMO

PURPOSE: Genomic classification of melanoma has thus far focused on the mutational status of BRAF, NRAS, and NF1. The clinical utility of this classification remains limited, and the landscape of alterations in other oncogenic signaling pathways is underexplored. METHODS: Using primary samples from the InterMEL study, a retrospective cohort of cases with specimens collected from an international consortium with participating institutions throughout the United States and Australia, with oversampling of cases who ultimately died of melanoma, we examined mutual exclusivity and co-occurrence of genomic alterations in 495 stage II/III primary melanomas across 11 cancer pathways. Somatic mutation and copy number alterations were analyzed from next-generation sequencing using a clinical sequencing panel. RESULTS: Mutations in the RTK-RAS pathway were observed in 81% of cases. Other frequently occurring pathways were TP53 (31%), Cell Cycle (30%), and PI3K (18%). These frequencies are generally lower than was observed in The Cancer Genome Atlas, where the specimens analyzed were predominantly obtained from metastases. Overall, 81% of the cases had at least one targetable mutation. The RTK-RAS pathway was the only pathway that demonstrated strong and statistically significant mutual exclusivity. However, this strong mutual exclusivity signal was evident only for the three common genes in the pathway (BRAF, NRAS, and NF1). Analysis of co-occurrence of different pathways exhibited no positive significant trends. However, interestingly, a high frequency of cases with none of these pathways represented was observed, 8.4% of cases versus 4.0% expected (P < .001). A higher frequency of RTK-RAS singletons (with no other pathway alteration) was observed compared with The Cancer Genome Atlas. Clonality analyses suggest strongly that both the cell cycle and RTK-RAS pathways represent early events in melanogenesis. CONCLUSION: Our results confirm the dominance of mutations in the RTK-RAS pathway. The presence of many mutations in several well-known, actionable pathways suggests potential avenues for targeted therapy in these early-stage cases.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Melanoma/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Melanoma Maligno Cutâneo
13.
Cancer Res Commun ; 3(3): 483-488, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36969913

RESUMO

Many studies have shown that the distributions of the genomic, nucleotide, and epigenetic contexts of somatic variants in tumors are informative of cancer etiology. Recently, a new direction of research has focused on extracting signals from the contexts of germline variants and evidence has emerged that patterns defined by these factors are associated with oncogenic pathways, histologic subtypes, and prognosis. It remains an open question whether aggregating germline variants using meta-features capturing their genomic, nucleotide, and epigenetic contexts can improve cancer risk prediction. This aggregation approach can potentially increase statistical power for detecting signals from rare variants, which have been hypothesized to be a major source of the missing heritability of cancer. Using germline whole-exome sequencing data from the UK Biobank, we developed risk models for 10 cancer types using known risk variants (cancer-associated SNPs and pathogenic variants in known cancer predisposition genes) as well as models that additionally include the meta-features. The meta-features did not improve the prediction accuracy of models based on known risk variants. It is possible that expanding the approach to whole-genome sequencing can lead to gains in prediction accuracy. Significance: There is evidence that cancer is partly caused by rare genetic variants that have not yet been identified. We investigate this issue using novel statistical methods and data from the UK Biobank.


Assuntos
Predisposição Genética para Doença , Neoplasias , Humanos , Sequenciamento do Exoma , Predisposição Genética para Doença/genética , Neoplasias/genética , Mutação em Linhagem Germinativa/genética , Genômica
14.
Melanoma Res ; 33(3): 163-172, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36805567

RESUMO

Differential methylation plays an important role in melanoma development and is associated with survival, progression and response to treatment. However, the mechanisms by which methylation promotes melanoma development are poorly understood. The traditional explanation of selective advantage provided by differential methylation postulates that hypermethylation of regulatory 5'-cytosine-phosphate-guanine-3' dinucleotides (CpGs) downregulates the expression of tumor suppressor genes and therefore promotes tumorigenesis. We believe that other (not necessarily alternative) explanations of the selective advantages of methylation are also possible. Here, we hypothesize that melanoma cells use methylation to shut down transcription of nonessential genes - those not required for cell survival and proliferation. Suppression of nonessential genes allows tumor cells to be more efficient in terms of energy and resource usage, providing them with a selective advantage over the tumor cells that transcribe and subsequently translate genes they do not need. We named the hypothesis the Rule Out (RO) hypothesis. The RO hypothesis predicts higher methylation of CpGs located in regulatory regions (CpG islands) of nonessential genes. It also predicts the higher methylation of regulatory CpGs linked to nonessential genes in melanomas compared to nevi and lower expression of nonessential genes in malignant (derived from melanoma) versus normal (derived from nonaffected skin) melanocytes. The analyses conducted using in-house and publicly available data found that all predictions derived from the RO hypothesis hold, providing observational support for the hypothesis.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/patologia , Neoplasias Cutâneas/patologia , Regiões Promotoras Genéticas , Metilação de DNA , Ilhas de CpG , Regulação Neoplásica da Expressão Gênica , Melanoma Maligno Cutâneo
15.
Front Immunol ; 13: 880959, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505421

RESUMO

Response to immunotherapy across multiple cancer types is approximately 25%, with some tumor types showing increased response rates compared to others (i.e. response rates in melanoma and non-small cell lung cancer (NSCLC) are typically 30-60%). Patients whose tumors are resistant to immunotherapy often lack high levels of pre-existing inflammation in the tumor microenvironment. Increased tumor glycolysis, acting through glucose deprivation and lactic acid accumulation, has been shown to have pleiotropic immune suppressive effects using in-vitro and in-vivo models of disease. To determine whether the immune suppressive effect of tumor glycolysis is observed across human solid tumors, we analyzed glycolytic and immune gene expression patterns in multiple solid malignancies. We found that increased expression of a glycolytic signature was associated with decreased immune infiltration and a more aggressive disease across multiple tumor types. Radiologic and pathologic analysis of untreated estrogen receptor (ER)-negative breast cancers corroborated these observations, and demonstrated that protein expression of glycolytic enzymes correlates positively with glucose uptake and negatively with infiltration of CD3+ and CD8+ lymphocytes. This study reveals an inverse relationship between tumor glycolysis and immune infiltration in a large cohort of multiple solid tumor types.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Imunoterapia , Glicólise , Microambiente Tumoral
16.
Clin Cancer Res ; 28(21): 4649-4659, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36044468

RESUMO

PURPOSE: Clinical relevance thresholds and laboratory methods are poorly defined for MET amplification, a targetable biomarker across malignancies. EXPERIMENTAL DESIGN: The utility of next-generation sequencing (NGS) in assessing MET copy number alterations was determined in >50,000 solid tumors. Using fluorescence in situ hybridization as reference, we validated and optimized NGS analysis. RESULTS: Incorporating read-depth and focality analyses achieved 91% concordance, 97% sensitivity, and 89% specificity. Tumor heterogeneity, neoplastic cell proportions, and genomic focality affected MET amplification assessment. NGS methodology showed superiority in capturing overall amplification status in heterogeneous tumors and defining amplification focality among other genomic alterations. MET copy gains and amplifications were found in 408 samples across 23 malignancies. Total MET copy number inversely correlated with amplified segment size. High-level/focal amplification was enriched in certain genomic subgroups and associated with targeted therapy response. CONCLUSIONS: Leveraging our integrated bioinformatic approach, targeted therapy benefit was observed across diverse MET amplification contexts.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Hibridização in Situ Fluorescente , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/genética , Genômica
17.
Pigment Cell Melanoma Res ; 35(6): 605-612, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35876628

RESUMO

It is unclear why some melanomas aggressively metastasize while others remain indolent. Available studies employing multi-omic profiling of melanomas are based on large primary or metastatic tumors. We examine the genomic landscape of early-stage melanomas diagnosed prior to the modern era of immunological treatments. Untreated cases with Stage II/III cutaneous melanoma were identified from institutions throughout the United States, Australia and Spain. FFPE tumor sections were profiled for mutation, methylation and microRNAs. Preliminary results from mutation profiling and clinical pathologic correlates show the distribution of four driver mutation sub-types: 31% BRAF; 18% NRAS; 21% NF1; 26% Triple Wild Type. BRAF mutant tumors had younger age at diagnosis, more associated nevi, more tumor infiltrating lymphocytes, and fewer thick tumors although at generally more advanced stage. NF1 mutant tumors were frequent on the head/neck in older patients with severe solar elastosis, thicker tumors but in earlier stages. Triple Wild Type tumors were predominantly male, frequently on the leg, with more perineural invasion. Mutations in TERT, TP53, CDKN2A and ARID2 were observed often, with TP53 mutations occurring particularly frequently in the NF1 sub-type. The InterMEL study will provide the most extensive multi-omic profiling of early-stage melanoma to date. Initial results demonstrate a nuanced understanding of the mutational and clinicopathological landscape of these early-stage tumors.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , Masculino , Idoso , Feminino , Melanoma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/genética , Mutação/genética , Melanoma Maligno Cutâneo
18.
Methods Mol Biol ; 2493: 89-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35751811

RESUMO

Clinical sequencing studies routinely involve molecular profiling of patients for mutations and copy number alterations. However, detection of "actionable" aberrations to guide treatment decisions require accurate, tumor purity-, ploidy-, and clonal heterogeneity-adjusted integer copy number calls. In this chapter, we describe the FACETS algorithm, an Allele-Specific Copy Number (ASCN) analysis tool with a broad application to whole-genome, whole-exome, as well as targeted panel sequencing platforms to annotate the genome for the detection of copy number alterations including homozygous/heterozygous deletions, copy-neutral loss-of-heterozygosity (LOH) events, allele-specific gains/amplifications, and cellular fraction profiles.We will describe some methodological details on joint segmentation of total and allele-specific copy number, on the estimation of integer copy number calls adjusting for tumor purity, ploidy, and intratumor heterogeneity, along with comprehensive output and integrated visualization. We also provide a tutorial on the installation, application, and tips to run and interpret FACETS.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
19.
J Natl Cancer Inst ; 114(11): 1545-1548, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-35699480

RESUMO

Low-stage, low-grade endometrioid endometrial carcinoma (EEC), the most common histologic type of endometrial cancer, typically has a favorable prognosis. A subset of these cancers, however, displays an aggressive clinical course with early recurrences, including distant relapses. All statistical tests were 2-sided. Using a combination of whole-exome and targeted capture sequencing of 65 FIGO stage IA and IB grade 1 EECs treated with surgery alone, we demonstrate that chromosome 1q gain (odds ratio [OR] = 8.09, 95% confidence interval [CI] = 1.59 to 54.6; P = .02), PIK3CA mutation (OR = 9.16, 95% CI = 1.95 to 61.8; P = .01), and DNA mismatch repair-deficient molecular subtype (OR = 7.92, 95% CI = 1.44 to 87.6; P = .02) are independent predictors of early recurrences within 3 years in this patient population. Chromosome 1q gain was validated in an independent dataset of stage I grade 1 EECs subjected to whole-exome sequencing. Our findings expand on the repertoire of genomic parameters that should be considered in the evaluation of patients with low-stage, low-grade EEC.


Assuntos
Carcinoma Endometrioide , Neoplasias do Endométrio , Feminino , Humanos , Estadiamento de Neoplasias , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Carcinoma Endometrioide/genética , Carcinoma Endometrioide/patologia , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/cirurgia , Neoplasias do Endométrio/patologia , Prognóstico , Genômica
20.
JCO Precis Oncol ; 6: e2100365, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35235413

RESUMO

PURPOSE: Mitogen-activated protein kinase pathway-activating mutations occur in the majority of colorectal cancer (CRC) cases and show mutual exclusivity. We identified 47 epidermal growth factor receptor/BRAF inhibitor-naive CRC patients with dual RAS hotspot/BRAF V600E mutations (CRC-DD) from a cohort of 4,561 CRC patients with clinical next-generation sequencing results. We aimed to define the molecular phenotypes of the CRC-DD and to test if the dual RAS hotspot/BRAF V600E mutations coexist within the same cell. MATERIALS AND METHODS: We developed a single-cell genotyping method with a mutation detection rate of 96.3% and a genotype prediction accuracy of 92.1%. Mutations in the CRC-DD cohort were analyzed for clonality, allelic imbalance, copy number, and overall survival. RESULTS: Application of single-cell genotyping to four CRC-DD revealed the co-occurrence of both mutations in the following percentages of cells per case: NRAS G13D/KRAS G12C, 95%; KRAS G12D/NRAS G12V, 48%; BRAF V600E/KRAS G12D, 44%; and KRAS G12D/NRAS G13V, 14%, respectively. Allelic imbalance favoring the oncogenic allele was less frequent in CRC-DD (24 of 76, 31.5%, somatic mutations) compared with a curated cohort of CRC with a single-driver mutation (CRC-SD; 119 of 232 mutations, 51.3%; P = .013). Microsatellite instability-high status was enriched in CRC-DD compared with CRC-SD (23% v 11.4%, P = .028). Of the seven CRC-DD cases with multiregional sequencing, five retained both driver mutations throughout all sequenced tumor sites. Both CRC-DD cases with discordant multiregional sequencing were microsatellite instability-high. CONCLUSION: Our findings indicate that dual-driver mutations occur in a rare subset of CRC, often within the same tumor cells and across multiple tumor sites. Their presence and a lower rate of allelic imbalance may be related to dose-dependent signaling within the mitogen-activated protein kinase pathway.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Neoplasias Colorretais/genética , Humanos , Instabilidade de Microssatélites , Proteínas Quinases Ativadas por Mitógeno/genética , Mutação/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas p21(ras)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA