Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2207210120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307455

RESUMO

The classical manifestation of COVID-19 is pulmonary infection. After host cell entry via human angiotensin-converting enzyme II (hACE2), the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus can infect pulmonary epithelial cells, especially the AT2 (alveolar type II) cells that are crucial for maintaining normal lung function. However, previous hACE2 transgenic models have failed to specifically and efficiently target the cell types that express hACE2 in humans, especially AT2 cells. In this study, we report an inducible, transgenic hACE2 mouse line and showcase three examples for specifically expressing hACE2 in three different lung epithelial cells, including AT2 cells, club cells, and ciliated cells. Moreover, all these mice models develop severe pneumonia after SARS-CoV-2 infection. This study demonstrates that the hACE2 model can be used to precisely study any cell type of interest with regard to COVID-19-related pathologies.


Assuntos
COVID-19 , Humanos , Animais , Camundongos , Camundongos Transgênicos , SARS-CoV-2 , Células Epiteliais , Células Epiteliais Alveolares , Modelos Animais de Doenças
2.
Cell Chem Biol ; 30(3): 295-307.e5, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36889312

RESUMO

The peroxiredoxin (PRDX) family is a class of antioxidant enzymes with peroxidase activity. Human PRDXs currently have six members (PRDX1-6), which are gradually becoming potential therapeutic targets for major diseases such as cancer. In this study, we reported ainsliadimer A (AIN), a sesquiterpene lactone dimer with antitumor activity. We found that AIN directly targets Cys173 of PRDX1 and Cys172 of PRDX2 and then inhibits their peroxidase activities. As a result, the level of intracellular ROS increases, causing oxidative stress damage in mitochondria, inhibiting mitochondrial respiration, and significantly inhibiting ATP production. AIN inhibits the proliferation and induces apoptosis of colorectal cancer cells. Additionally, it inhibits tumor growth in mice and the growth of tumor organoid models. Therefore, AIN can be one of the natural compounds targeting PRDX1 and PRDX2 in the treatment of colorectal cancer.


Assuntos
Neoplasias Colorretais , Peroxirredoxinas , Animais , Humanos , Camundongos , Antioxidantes , Apoptose , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Espécies Reativas de Oxigênio
3.
J Pediatr Surg ; 58(7): 1311-1316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36973104

RESUMO

PURPOSE: To induce the expression of Amphinase, an antitumor ribonuclease from Rana pipiens oocytes, in neuroblastoma cell lines and build a foundation for mechanism study. METHODS: A loxP-cassette vector was constructed comprising a sequence of loxP -Puro-3∗polyA-loxP, followed by amphinase cDNA. The vector was transfected into neuroblastoma cell lines, SK-N-BE(2)-C, by Lipofectamine LTX. The transfected cells were selected by puromycin for two weeks. Polymerase chain reaction (PCR) and real-time quantitative PCR (qPCR) were conducted to verify that the loxP-cassette vector was stably transfected. The expression of amphinase was activated by the addition of Cre recombinase delivered by a lentiviral vector and identified by qPCR and Western blotting (WB). CCK8 assay and colony formation assay were conducted to check the effect of amphinase on cell proliferation. RNA sequencing (RNA-seq) was conducted to explore the targeted pathway of Cre/loxP-mediated amphinase and recombinant amphinase. RESULTS: Stably transfected cell clones were achieved through puromycin selection. After Cre recombinase was delivered to the cells, the loxP-flanked fragment was deleted and the expression of amphinase was induced, which were tested by PCR and qPCR. It was shown that cell proliferation was significantly inhibited by the amphinase mediated by the Cre/loxP system. KEGG enrichment and GSEA analysis indicated that amphinase had an impact on the ER function of neuroblastoma cells, which was identical to the effect of the recombinant amphinase. CONCLUSION: We successfully induce the expression of amphinase in neuroblastoma cell lines via Cre/loxP system. The Cre/loxP-mediated amphinase had a similar antitumor mechanism to the recombinant amphinase, providing a powerful tool for the mechanism study of amphinase.


Assuntos
Vetores Genéticos , Neuroblastoma , Humanos , Integrases/genética , Integrases/metabolismo , Linhagem Celular , Neuroblastoma/genética
4.
Biochem Biophys Res Commun ; 581: 12-19, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34653673

RESUMO

CD8+ T cells play a critical role during adaptive immune response, which often change locations and expand or contract in numbers under different states. In the past, many attempts to develop CD8+T cells that express luciferase in vivo have involved the use of viral transduction, which has drawbacks of hardly tracked via detection of luciferase signal in untouched natural states. Here, we generate a transgenic mouse model via CRISPR-mediated genome editing, C57BL/6-CD8aem(IRES-AkaLuci-2A-EGFP) knock-in mice(CD8a-Aka mice), as a novel tool for non-invasive imaging of CD8+ T cells, which expressed a highly sensitive luciferase-Akaluciferase. Our study offers a convenient and robust tool for understanding fundamental CD8+ T cell biology in experimental applications and preclinical translational studies.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Sistemas CRISPR-Cas , Neoplasias do Colo/diagnóstico por imagem , Efeito Fundador , Edição de Genes/métodos , Genoma , Camundongos Transgênicos/genética , Animais , Antígenos CD8/genética , Antígenos CD8/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Diagnóstico por Imagem/métodos , Técnicas de Introdução de Genes , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Xenoenxertos , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Transgênicos/imunologia , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Zigoto/imunologia , Zigoto/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 636220, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135859

RESUMO

miR-29a/b1 was reportedly involved in the regulation of the reproductive function in female mice, but the underlying molecular mechanisms are not clear. In this study, female mice lacking miR-29a/b1 showed a delay in vaginal opening, irregular estrous cycles, ovulation disorder and subfertility. The level of luteinizing hormone (LH) was significantly lower in plasma but higher in pituitary of mutant mice. However, egg development was normal in mutant mice and the ovulation disorder could be rescued by the superovulation treatment. These results suggested that the LH secretion was impaired in mutant mice. Further studies showed that deficiency of miR-29a/b1 in mice resulted in an abnormal expression of a number of proteins involved in vesicular transport and exocytosis in the pituitary, indicating the mutant mice had insufficient LH secretion. However, the detailed mechanism needs more research.


Assuntos
Regulação da Expressão Gênica , Hormônio Luteinizante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ovulação , Animais , Exocitose , Feminino , Fertilidade , Hormônio Liberador de Gonadotropina/metabolismo , Heterozigoto , Humanos , Masculino , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Ovário/fisiologia , Fenótipo , Hipófise , Progesterona/sangue , Superovulação , Espectrometria de Massas em Tandem
6.
Acta Biochim Biophys Sin (Shanghai) ; 52(10): 1063-1070, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32556117

RESUMO

Neuron-restrictive silencer factor (NRSF) is a zinc finger protein that acts as a negative transcriptional regulator by recruiting histone deacetylases and other co-factors. It plays a crucial role in nervous system development and is recently reported to be involved in tumorigenesis in a tumor type-dependent manner; however, the role of NRSF in hepatocellular carcinoma (HCC) tumorigenesis remains unclear. Here, we found that NRSF expression was up-regulated in 27 of 49 human HCC tissue samples examined. Additionally, mice with conditional NRSF-knockout in the liver exhibited a higher tolerance against diethylnitrosamine (DEN)-induced acute liver injury and were less sensitive to DEN-induced HCC initiation. Our results showed that silencing NRSF in HepG2 cells using RNAi technology significantly inhibited HepG2 cell proliferation and severely hindered their migration and invasion potentials. Our results demonstrated that NRSF plays a pivotal role in promoting DEN-induced HCC initiation via a mechanism related to the STAT3 and AKT signaling pathways. Thus, NRSF could be a potential therapeutic target for treating human HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transdução de Sinais , Animais , Carcinogênese , Carcinoma Hepatocelular/patologia , Movimento Celular/genética , Proliferação de Células/genética , Dietilnitrosamina/toxicidade , Feminino , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
7.
J Cancer ; 10(20): 4902-4912, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31598162

RESUMO

Purpose: In a previous study, we found that transforming growth factor beta-induced (TGFBI) is a hub gene strongly associated with oral squamous cell carcinoma (OSCC), using gene chip meta-analysis and PPI network analysis. Thus, the present study was established to explore the role of TGFBI in the pathogenesis of OSCC and to define the underlying mechanisms. Methods: The correlations between TGFBI expression and the clinicopathological features and prognosis of OSCC were analyzed. Then, TGFBI-knockout HSC-3 cell lines were constructed using the CRISPR/Cas9 system. Cell proliferation, migration, and invasion in vitro were determined by cell counting, CCK-8, colony formation, and Transwell assays. Moreover, a xenograft animal study was implemented to determine the tumorigenicity and metastatic ability associated with TGFBI in vivo. The genes and pathways differentially expressed after TGFBI knockout were determined using transcriptional sequencing and bioinformatics. Results: TGFBI expression was significantly higher in OSCC than in normal tissue. Its high expression was also correlated with high stage and was predictive of poor prognosis, as we expected. Knockout of TGFBI inhibited cell proliferation and clone formation, and enhanced cell migration and invasion in vitro. Besides, the xenograft animal study showed that TGFBI knockout suppressed tumor growth and metastasis in vivo. Furthermore, transcriptome sequencing revealed that genes associated with cell proliferation, metastasis, and inflammatory responses exhibited a change of expression upon TGFBI knockout. GO and KEGG analyses indicated that the function of TGFBI is related to responses to bacteria and inflammatory responses. Conclusions: TGFBI overexpression can promote OSCC and is associated with poor prognosis in OSCC patients. TGFBI knockout can inhibit cell proliferation and metastasis in vivo. TGFBI may alter cell responses to bacteria, which causes an imbalance in the immune inflammatory response and promotes the development of OSCC.

8.
Acta Biochim Biophys Sin (Shanghai) ; 51(9): 945-952, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31435645

RESUMO

The relationship of carcinogenesis and DNA methyltransferases has attracted extensive attention in tumor research. We reported previously that inhibition of de novo DNA methyltransferase 3a (Dnmt3a) in murine B16 melanoma cells significantly suppressed tumor growth and metastasis in xenografted mouse model. Here, we further demonstrated that knockdown of Dnmt3a enhanced the proliferation in anchor-independent conditions of B16 cells, but severely disrupted its multipotent differentiation capacity in vitro. Furthermore, transforming growth factor ß1, a key trigger in stem cell differentiation and tumor cell epithelial-mesenchymal transition (EMT), mainly induced apoptosis, but not EMT in Dnmt3a-deficient B16 cells. These data suggested that Dnmt3a is required for maintaining the tumor stemness of B16 cells and it assists B16 cells to escape from death during cell differentiation. Thus it is hypothesized that not only extraordinary self-renewal ability, but also the capacity of multipotent differentiation is necessary for the melanoma tumorigenesis. Inhibition of multipotent differentiation of tumor cells may shed light on the tumor treatment.


Assuntos
Carcinogênese/metabolismo , DNA (Citosina-5-)-Metiltransferases/fisiologia , Melanoma Experimental/patologia , Células-Tronco Neoplásicas/patologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , DNA Metiltransferase 3A , Transição Epitelial-Mesenquimal , Camundongos , Camundongos Endogâmicos C57BL
9.
Acta Biochim Biophys Sin (Shanghai) ; 50(4): 391-398, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29566107

RESUMO

Utilizing cytotoxic proteins linked to tumor targeting molecules as anti-tumor drugs is a promising approach. However, most cytotoxins derived from bacteria or plants have inherent problems such as large molecular weights and they trigger a strong immune system reaction, which leads to drug failure and serious side effects. Amphinase (Amph) is a ribonuclease with a low molecular weight that is found in northern leopard frog oocytes. It has strong cytotoxicity against tumor cell lines in vitro and weak immunogenicity in vivo, and is a promising candidate in the development of targeted drugs. Transforming growth factor-α (TGF-α) that binds to the epidermal growth factor receptor (EGFR) is being used as a targeting molecule for the treatment of EGFR high-expressing tumors. In this study, we expressed and purified a recombinant amphinase and its TGF-α fusion protein (AGT) separately from Escherichia coli. AGT exhibited more significant cytotoxicity in vitro on EGFR high-expressing tumor cell lines, and stronger anti-tumor effects in vivo. This fusion protein also exhibited unusual thermostability, low in vivo immunogenicity, and side effects. Our results provide a new entry point for the development of novel, highly efficient anti-tumor targeting biological agents with low immunogenicity.


Assuntos
Antineoplásicos/química , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Ribonucleases/química , Células A549 , Animais , Apoptose , Linhagem Celular Tumoral , Escherichia coli/metabolismo , Feminino , Células HL-60 , Humanos , Concentração Inibidora 50 , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Nus , Oócitos/metabolismo , Plasmídeos/metabolismo , Ranidae , Proteínas Recombinantes de Fusão/química , Fator de Crescimento Transformador alfa/metabolismo
10.
Acta Biochim Biophys Sin (Shanghai) ; 48(10): 894-901, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27590062

RESUMO

Onconase (Onc) is a cytotoxic ribonuclease derived from leopard frog oocytes or early embryos, and has been applied to the treatment of malignant mesothelioma in clinics. Onc also exhibits effective growth suppression of human non-small-cell lung cancer (NSCLC). Artemisinin (Art) and its derivatives are novel antimalarial drugs that exhibit antitumor and antivirus activities. In this study, we investigated the antitumor effects of combinations of Onc and an Art derivative, dihydroartemisinin (DHA), both in vitro and in vivo Isobologram analyses showed synergistic effects on the proliferation of NSCLC cells under the treatment with Onc and DHA. In vivo experiments also showed that the antitumor effect of Onc was markedly enhanced by DHA in mouse xenograft models. No obvious adverse effect was observed after the treatment. The density of microvasculature in the tumor tissues treated with Onc/DHA combination was lower than those treated with Onc or DHA alone. The above results are consistent with the results of the matrigel plug test for angiogenesis suppression using the Onc/DHA combination. These results imply that the anti-angiogenesis effects may make important contributions to the in vivo antitumor effects of the Onc/DHA combination treatment. The Onc/DHA combination therapy may have the potential to become a novel regimen for NSCLC and mesothelioma.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Células A549 , Animais , Antimaláricos/administração & dosagem , Antimaláricos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Artemisininas/administração & dosagem , Artemisininas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/irrigação sanguínea , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Sinergismo Farmacológico , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/metabolismo , Masculino , Mesotelioma/irrigação sanguínea , Mesotelioma/metabolismo , Mesotelioma Maligno , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/metabolismo , Ribonucleases/administração & dosagem , Ribonucleases/farmacologia , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Acta Biochim Biophys Sin (Shanghai) ; 48(8): 762-7, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27353319

RESUMO

Neuroblastoma is the most common abdominal malignant tumor in childhood. Immunotoxin (IT) that targets the tumor cell surface receptor is a new supplementary therapeutic treatment approach. The purpose of this study is to detect the expression of epidermal growth factor receptor (EGFR) in neuroblastoma cell lines and tissues, and to explore if IT therapy can be used to treat refractory neuroblastoma. The EGFR expression in human neuroblastoma tissue samples was detected by immunohistochemistry staining. The positive rate of EGFR expression was 81.0% in neuroblastoma tissue and 50.0% in gangliocytoma, respectively, but without statistical significance between them (P > 0.05). The positive rate of EGFR expression in favorable type and unfavorable type was 62.5% and 92.3%, respectively, but they were not statistically different (P > 0.05). Results from pre-chemotherapy and post-chemotherapy samples showed that there was no significant statistical difference (P > 0.05) between them in the EGFR expression. Furthermore, the EGFR expression levels in five neuroblastoma cell lines were measured using cell-based ELISA assay and western blot analysis. The results showed that the expression of EGFR was higher in KP-N-NS and BE(2)-C than those in other cell lines. Our results revealed that there are consistent and widespread expressions of EGFR in neuroblastoma tissues as well as in neuroblastoma cell lines, suggesting that it is possible to develop future treatment strategies of neuroblastoma by targeting at the EGFR.


Assuntos
Receptores ErbB/metabolismo , Neuroblastoma/metabolismo , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática , Humanos , Neuroblastoma/patologia
12.
Nat Commun ; 6: 8481, 2015 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-26412466

RESUMO

The identification of synergistic chemotherapeutic agents from a large pool of candidates is highly challenging. Here, we present a Ranking-system of Anti-Cancer Synergy (RACS) that combines features of targeting networks and transcriptomic profiles, and validate it on three types of cancer. Using data on human ß-cell lymphoma from the Dialogue for Reverse Engineering Assessments and Methods consortium we show a probability concordance of 0.78 compared with 0.61 obtained with the previous best algorithm. We confirm 63.6% of our breast cancer predictions through experiment and literature, including four strong synergistic pairs. Further in vivo screening in a zebrafish MCF7 xenograft model confirms one prediction with strong synergy and low toxicity. Validation using A549 lung cancer cells shows similar results. Thus, RACS can significantly improve drug synergy prediction and markedly reduce the experimental prescreening of existing drugs for repurposing to cancer treatment, although the molecular mechanism underlying particular interactions remains unknown.


Assuntos
Antineoplásicos/farmacologia , Sinergismo Farmacológico , Modelos Teóricos , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Genômica , Humanos , Células MCF-7 , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
13.
Nucleic Acids Res ; 40(21): e166, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22879379

RESUMO

Methods for generating loss-of-function mutations, such as conventional or conditional gene knockout, are widely used in deciphering gene function in vivo. By contrast, inducible and reversible regulation of endogenous gene expression has not been well established. Using a mouse model, we demonstrate that a chimeric transcriptional repressor molecule (tTS) can reversibly inhibit the expression of an endogenous gene, Nmyc. In this system, a tetracycline response element (TRE) artificially inserted near the target gene's promoter region turns the gene on and off in a tetracycline-inducible manner. Nmyc(TRE) mice were generated by inserting a TRE into the first intron of Nmyc by the knockin technique. Nmyc(TRE) mice were crossed to tTS transgenic mice to produce Nmyc(TRE/TRE): tTS embryos. In these embryos, tTS blocked Nmyc expression, and embryonic lethality was observed at E11.5d. When the dam was exposed to drinking water containing doxycycline (dox), normal endogenous Nmyc expression was rescued, and the embryo survived to birth. This novel genetic modification strategy based on the tTS-dox system for inducible and reversible regulation of endogenous mouse genes will be a powerful tool to investigate target genes that cause embryonic lethality or other defects where reversible regulation or temporary shutdown of the target gene is needed.


Assuntos
Regulação da Expressão Gênica , Marcação de Genes/métodos , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Córtex Cerebelar/anormalidades , Córtex Cerebelar/crescimento & desenvolvimento , Córtex Cerebelar/metabolismo , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Genes Letais , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Repressoras/genética , Elementos de Resposta , Sindactilia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA