Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 13: 883140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712579

RESUMO

Eudicots account for ~75% of living angiosperms, containing important food and energy crops. Recently, high-quality genome sequences of several eudicots including Aquilegia coerulea and Nelumbo nucifera have become available, providing an opportunity to investigate the early evolutionary characteristics of eudicots. We performed genomic hierarchical and event-related alignments to infer homology within and between representative species of eudicots. The results provide strong evidence for multiple independent polyploidization events during the early diversification of eudicots, three of which are likely to be allopolyploids: The core eudicot-common hexaploidy (ECH), Nelumbo-specific tetraploidy (NST), and Ranunculales-common tetraploidy (RCT). Using different genomes as references, we constructed genomic alignment to list the orthologous and paralogous genes produced by polyploidization and speciation. This could provide a fundamental framework for studying other eudicot genomes and gene(s) evolution. Further, we revealed significantly divergent evolutionary rates among these species. By performing evolutionary rate correction, we dated RCT to be ~118-134 million years ago (Mya), after Ranunculales diverged with core eudicots at ~123-139 Mya. Moreover, we characterized genomic fractionation resulting from gene loss and retention after polyploidizations. Notably, we revealed a high degree of divergence between subgenomes. In particular, synonymous nucleotide substitutions at synonymous sites (Ks) and phylogenomic analyses implied that A. coerulea might provide the subgenome(s) for the gamma-hexaploid hybridization.

2.
BMC Plant Biol ; 22(1): 298, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35710333

RESUMO

BACKGROUND: Gene conversion has an important effect on duplicate genes produced by polyploidization. Poplar (Populus trichocarpa) and willow (Salix brachista) are leading models and excellent green plants in the Salicaceae. Although much attention has been paid to the evolution of duplicated genes in poplar and willow, the role of conversion between duplicates generated from polyploidization remains poorly understood. RESULTS: Here, through genomic synteny analyses, we identified duplicate genes generated by the Salicaceae common tetraploidization (SCT) in the poplar and willow genomes. We estimated that at least 0.58% and 0.25% of poplar and willow duplicates were affected by whole-gene conversion after the poplar-willow divergence, with more (5.73% and 2.66%) affected by partial-gene conversion. Moreover, we found that the converted duplicated genes were unevenly distributed on each chromosome in the two genomes, and the well-preserved homoeologous chromosome regions may facilitate the conversion of duplicates. Notably, we found that conversion maintained the similarity of duplicates, likely contributing to the conservation of certain sequences, but is essentially accelerated the rate of evolution and increased species divergence. In addition, we found that converted duplicates tended to have more similar expression patterns than nonconverted duplicates. We found that genes associated with multigene families were preferentially converted. We also found that the genes encoding conserved structural domains associated with specific traits exhibited a high frequency of conversion. CONCLUSIONS: Extensive conversion between duplicate genes generated from the SCT contributes to the diversification of the family Salicaceae and has had long-lasting effects on those genes with important biological functions.


Assuntos
Populus , Salix , Evolução Molecular , Genes Duplicados/genética , Família Multigênica , Populus/genética , Salix/genética , Sintenia
3.
Genes (Basel) ; 12(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34946893

RESUMO

The peanut (Arachis hypogaea L.) is the leading oil and food crop among the legume family. Extensive duplicate gene pairs generated from recursive polyploidizations with high sequence similarity could result from gene conversion, caused by illegitimate DNA recombination. Here, through synteny-based comparisons of two diploid and three tetraploid peanut genomes, we identified the duplicated genes generated from legume common tetraploidy (LCT) and peanut recent allo-tetraploidy (PRT) within genomes. In each peanut genome (or subgenomes), we inferred that 6.8-13.1% of LCT-related and 11.3-16.5% of PRT-related duplicates were affected by gene conversion, in which the LCT-related duplicates were the most affected by partial gene conversion, whereas the PRT-related duplicates were the most affected by whole gene conversion. Notably, we observed the conversion between duplicates as the long-lasting contribution of polyploidizations accelerated the divergence of different Arachis genomes. Moreover, we found that the converted duplicates are unevenly distributed across the chromosomes and are more often near the ends of the chromosomes in each genome. We also confirmed that well-preserved homoeologous chromosome regions may facilitate duplicates' conversion. In addition, we found that these biological functions contain a higher number of preferentially converted genes, such as catalytic activity-related genes. We identified specific domains that are involved in converted genes, implying that conversions are associated with important traits of peanut growth and development.


Assuntos
Arachis/genética , Evolução Molecular , Genes Duplicados , Genoma de Planta , Poliploidia , Recombinação Genética , Arachis/classificação , Arachis/metabolismo , Biologia Computacional , Bases de Dados Genéticas , Análise de Sequência de DNA/métodos
4.
BMC Genomics ; 22(1): 460, 2021 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-34147070

RESUMO

BACKGROUND: Duplicated gene pairs produced by ancient polyploidy maintain high sequence similarity over a long period of time and may result from illegitimate recombination between homeologous chromosomes. The genomes of Asian cultivated rice Oryza sativa ssp. indica (XI) and Oryza sativa ssp. japonica (GJ) have recently been updated, providing new opportunities for investigating ongoing gene conversion events and their impact on genome evolution. RESULTS: Using comparative genomics and phylogenetic analyses, we evaluated gene conversion rates between duplicated genes produced by polyploidization 100 million years ago (mya) in GJ and XI. At least 5.19-5.77% of genes duplicated across the three rice genomes were affected by whole-gene conversion after the divergence of GJ and XI at ~ 0.4 mya, with more (7.77-9.53%) showing conversion of only portions of genes. Independently converted duplicates surviving in the genomes of different subspecies often use the same donor genes. The ongoing gene conversion frequency was higher near chromosome termini, with a single pair of homoeologous chromosomes, 11 and 12, in each rice genome being most affected. Notably, ongoing gene conversion has maintained similarity between very ancient duplicates, provided opportunities for further gene conversion, and accelerated rice divergence. Chromosome rearrangements after polyploidization are associated with ongoing gene conversion events, and they directly restrict recombination and inhibit duplicated gene conversion between homeologous regions. Furthermore, we found that the converted genes tended to have more similar expression patterns than nonconverted duplicates. Gene conversion affects biological functions associated with multiple genes, such as catalytic activity, implying opportunities for interaction among members of large gene families, such as NBS-LRR disease-resistance genes, contributing to the occurrence of the gene conversion. CONCLUSION: Duplicated genes in rice subspecies generated by grass polyploidization ~ 100 mya remain affected by gene conversion at high frequency, with important implications for the divergence of rice subspecies.


Assuntos
Oryza , Idoso de 80 Anos ou mais , Evolução Molecular , Duplicação Gênica , Genes Duplicados , Genoma de Planta , Humanos , Oryza/genética , Filogenia
5.
Genomics Proteomics Bioinformatics ; 18(3): 333-340, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33157303

RESUMO

Lycophytes and seed plants constitute the typical vascular plants. Lycophytes have been thought to have no paleo-polyploidization although the event is known to be critical for the fast expansion of seed plants. Here, genomic analyses including the homologous gene dot plot analysis detected multiple paleo-polyploidization events, with one occurring approximately 13-15 million years ago (MYA) and another about 125-142 MYA, during the evolution of the genome of Selaginella moellendorffii, a model lycophyte. In addition, comparative analysis of reconstructed ancestral genomes of lycophytes and angiosperms suggested that lycophytes were affected by more paleo-polyploidization events than seed plants. Results from the present genomic analyses indicate that paleo-polyploidization has contributed to the successful establishment of both lineages-lycophytes and seed plants-of vascular plants.


Assuntos
Evolução Molecular , Genoma de Planta , Poliploidia , Selaginellaceae/genética , Genômica , Filogenia
6.
Front Plant Sci ; 11: 1076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32849677

RESUMO

Polyploidies produce a large number of duplicated regions and genes in genomes, which have a long-term impact and stimulate genetic innovation. The high similarity between homeologous chromosomes, forming different subgenomes, or homologous regions after genome repatterning, may permit illegitimate DNA recombination. Here, based on gene colinearity, we aligned the (sub)genomes of common wheat (Triticum aestivum, AABBDD genotype) and its relatives, including Triticum urartu (AA), Aegilops tauschii (DD), and T. turgidum ssp. dicoccoides (AABB) to detect the homeologous (paralogous or orthologous) colinear genes within and between (sub)genomes. Besides, we inferred more ancient paralogous regions produced by a much ancient grass-common tetraploidization. By comparing the sequence similarity between paralogous and orthologous genes, we assumed abnormality in the topology of constructed gene trees, which could be explained by gene conversion as a result of illegitimate recombination. We found large numbers of inferred converted genes (>2,000 gene pairs) suggested long-lasting genome instability of the hexaploid plant, and preferential donor roles by DD genes. Though illegitimate recombination was much restricted, duplicated genes produced by an ancient whole-genome duplication, which occurred millions of years ago, also showed evidence of likely gene conversion. As to biological function, we found that ~40% catalytic genes in colinearity, including those involved in starch biosynthesis, were likely affected by gene conversion. The present study will contribute to understanding the functional and structural innovation of the common wheat genome.

7.
Front Plant Sci ; 10: 986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447866

RESUMO

Owing to their nutritional and commercial values, the genomes of several citrus plants have been sequenced, and the genome of one close relative in the Rutaceae family, atalantia (Atalantia buxifolia), has also been sequenced. Here, we show a family-level comparative analysis of Rutaceae genomes. By using grape as the outgroup and checking cross-genome gene collinearity, we systematically performed a hierarchical and event-related alignment of Rutaceae genomes, and produced a gene list defining homologous regions based on ancestral polyploidization or speciation. We characterized genome fractionation resulting from gene loss or relocation, and found that erosion of gene collinearity could largely be described by a geometric distribution. Moreover, we found that well-assembled Rutaceae genomes retained significantly more genes (65-82%) than other eudicots affected by recursive polyploidization. Additionally, we showed divergent evolutionary rates among Rutaceae plants, with sweet orange evolving faster than others, and by performing evolutionary rate correction, re-dated major evolutionary events during their evolution. We deduced that the divergence between the Rutaceae family and grape occurred about 81.15-91.74 million years ago (mya), while the split between citrus and atalantia plants occurred <10 mya. In addition, we showed that polyploidization led to a copy number expansion of key gene families contributing to the biosynthesis of vitamin C. Overall, the present effort provides an important comparative genomics resource and lays a foundation to understand the evolution and functional innovation of Rutaceae genomes.

8.
iScience ; 7: 230-240, 2018 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-30267683

RESUMO

The genome of kiwifruit (Actinidia chinensis) was sequenced previously, the first in the Actinidiaceae family. It was shown to have been affected by polyploidization events, the nature of which has been elusive. Here, we performed a reanalysis of the genome and found clear evidence of 2 tetraploidization events, with one occurring ∼50-57 million years ago (Mya) and the other ∼18-20 Mya. Two subgenomes produced by each event have been under balanced fractionation. Moreover, genes were revealed to express in a balanced way between duplicated copies of chromosomes. Besides, lowered evolutionary rates of kiwifruit genes were observed. These findings could be explained by the likely auto-tetraploidization nature of the polyploidization events. Besides, we found that polyploidy contributed to the expansion of key functional genes, e.g., vitamin C biosynthesis genes. The present work also provided an important comparative genomics resource in the Actinidiaceae and related families.

9.
Mol Biol Evol ; 35(1): 16-26, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029269

RESUMO

Cucurbitaceae plants are of considerable biological and economic importance, and genomes of cucumber, watermelon, and melon have been sequenced. However, a comparative genomics exploration of their genome structures and evolution has not been available. Here, we aimed at performing a hierarchical inference of genomic homology resulted from recursive paleopolyploidizations. Unexpectedly, we found that, shortly after a core-eudicot-common hexaploidy, a cucurbit-common tetraploidization (CCT) occurred, overlooked by previous reports. Moreover, we characterized gene loss (and retention) after these respective events, which were significantly unbalanced between inferred subgenomes, and between plants after their split. The inference of a dominant subgenome and a sensitive one suggested an allotetraploid nature of the CCT. Besides, we found divergent evolutionary rates among cucurbits, and after doing rate correction, we dated the CCT to be 90-102 Ma, likely common to all Cucurbitaceae plants, showing its important role in the establishment of the plant family.


Assuntos
Cucurbitaceae/genética , Análise de Sequência de DNA/métodos , Sequência de Bases/genética , Mapeamento Cromossômico/métodos , Evolução Molecular , Variação Genética/genética , Genoma de Planta/genética , Genômica/métodos , Taxa de Mutação , Filogenia , Poliploidia , Tetraploidia
10.
Plant Physiol ; 174(1): 284-300, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28325848

RESUMO

Mainly due to their economic importance, genomes of 10 legumes, including soybean (Glycine max), wild peanut (Arachis duranensis and Arachis ipaensis), and barrel medic (Medicago truncatula), have been sequenced. However, a family-level comparative genomics analysis has been unavailable. With grape (Vitis vinifera) and selected legume genomes as outgroups, we managed to perform a hierarchical and event-related alignment of these genomes and deconvoluted layers of homologous regions produced by ancestral polyploidizations or speciations. Consequently, we illustrated genomic fractionation characterized by widespread gene losses after the polyploidizations. Notably, high similarity in gene retention between recently duplicated chromosomes in soybean supported the likely autopolyploidy nature of its tetraploid ancestor. Moreover, although most gene losses were nearly random, largely but not fully described by geometric distribution, we showed that polyploidization contributed divergently to the copy number variation of important gene families. Besides, we showed significantly divergent evolutionary levels among legumes and, by performing synonymous nucleotide substitutions at synonymous sites correction, redated major evolutionary events during their expansion. This effort laid a solid foundation for further genomics exploration in the legume research community and beyond. We describe only a tiny fraction of legume comparative genomics analysis that we performed; more information was stored in the newly constructed Legume Comparative Genomics Research Platform (www.legumegrp.org).


Assuntos
Fabaceae/genética , Genoma de Planta/genética , Genômica/métodos , Filogenia , Mapeamento Cromossômico , Evolução Molecular , Fabaceae/classificação , Duplicação Gênica , Genes de Plantas/genética , Modelos Genéticos , Poliploidia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA