Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
Neuromuscul Disord ; 39: 24-29, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714145

RESUMO

Structural variants (SVs) are infrequently observed in Duchenne muscular dystrophy (DMD), a condition mainly marked by deletions and point mutations in the DMD gene. SVs in DMD remain difficult to reliably detect due to the limited SV-detection capacity of conventionally used short-read sequencing technology. Herein, we present a family, a boy and his mother, with clinical signs of muscular dystrophy, elevated creatinine kinase levels, and intellectual disability. A muscle biopsy from the boy showed dystrophin deficiency. Routine molecular techniques failed to detect abnormalities in the DMD gene, however, dystrophin mRNA transcripts analysis revealed an absence of exons 59 to 79. Subsequent long-read whole-genome sequencing identified a rare complex structural variant, a 77 kb novel intragenic inversion, and a balanced translocation t(X;1)(p21.2;p13.3) rearrangement within the DMD gene, expanding the genetic spectrum of dystrophinopathy. Our findings suggested that SVs should be considered in cases where conventional molecular techniques fail to identify pathogenic variants.

2.
Cell Death Dis ; 15(5): 336, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744865

RESUMO

Fibrosis is a reparative and progressive process characterized by abnormal extracellular matrix deposition, contributing to organ dysfunction in chronic diseases. The tumor suppressor p53 (p53), known for its regulatory roles in cell proliferation, apoptosis, aging, and metabolism across diverse tissues, appears to play a pivotal role in aggravating biological processes such as epithelial-mesenchymal transition (EMT), cell apoptosis, and cell senescence. These processes are closely intertwined with the pathogenesis of fibrotic disease. In this review, we briefly introduce the background and specific mechanism of p53, investigate the pathogenesis of fibrosis, and further discuss p53's relationship and role in fibrosis affecting the kidney, liver, lung, and heart. In summary, targeting p53 represents a promising and innovative therapeutic approach for the prevention and treatment of organ fibrosis.


Assuntos
Fibrose , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Animais , Transição Epitelial-Mesenquimal , Apoptose , Terapia de Alvo Molecular
3.
Behav Brain Res ; 467: 115005, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38641178

RESUMO

BACKGROUND: Post-traumatic stress disorder (PTSD) refers to a chronic impairing psychiatric disorder occurring after exposure to the severe traumatic event. Studies have demonstrated that medicinal cannabis oil plays an important role in neuroprotection, but the mechanism by which it exerts anti-PTSD effects remains unclear. METHODS: The chronic complex stress (CCS) simulating the conditions of long voyage stress for 4 weeks was used to establish the PTSD mice model. After that, behavioral tests were used to evaluate PTSD-like behaviors in mice. Mouse brain tissue index was detected and hematoxylin-eosin staining was used to assess pathological changes in the hippocampus. The indicators of cell apoptosis and the BDNF/TRPC6 signaling activation in the mice hippocampus were detected by western blotting or real-time quantitative reverse transcription PCR experiments. RESULTS: We established the PTSD mice model induced by CCS, which exhibited significant PTSD-like phenotypes, including increased anxiety-like and depression-like behaviors. Medicinal cannabis oil treatment significantly ameliorated PTSD-like behaviors and improved brain histomorphological abnormalities in CCS mice. Mechanistically, medicinal cannabis oil reduced CCS-induced cell apoptosis and enhanced the activation of BDNF/TRPC6 signaling pathway. CONCLUSIONS: We constructed a PTSD model with CCS and medicinal cannabis oil that significantly improved anxiety-like and depressive-like behaviors in CCS mice, which may play an anti-PTSD role by stimulating the BDNF/TRPC6 signaling pathway.


Assuntos
Ansiedade , Fator Neurotrófico Derivado do Encéfalo , Depressão , Modelos Animais de Doenças , Hipocampo , Transdução de Sinais , Transtornos de Estresse Pós-Traumáticos , Canal de Cátion TRPC6 , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Masculino , Depressão/tratamento farmacológico , Depressão/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico , Transtornos de Estresse Pós-Traumáticos/metabolismo , Canal de Cátion TRPC6/metabolismo , Comportamento Animal/efeitos dos fármacos , Maconha Medicinal/farmacologia , Camundongos Endogâmicos C57BL , Apoptose/efeitos dos fármacos , Óleos de Plantas/farmacologia , Óleos de Plantas/administração & dosagem , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo
4.
J Physiol ; 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686538

RESUMO

Mechanical load is a potent regulator of cardiac structure and function. Although high workload during heart failure is associated with disruption of cardiomyocyte t-tubules and Ca2+ homeostasis, it remains unclear whether changes in preload and afterload may promote adaptive t-tubule remodelling. We examined this issue by first investigating isolated effects of stepwise increases in load in cultured rat papillary muscles. Both preload and afterload increases produced a biphasic response, with the highest t-tubule densities observed at moderate loads, whereas excessively low and high loads resulted in low t-tubule levels. To determine the baseline position of the heart on this bell-shaped curve, mice were subjected to mildly elevated preload or afterload (1 week of aortic shunt or banding). Both interventions resulted in compensated cardiac function linked to increased t-tubule density, consistent with ascension up the rising limb of the curve. Similar t-tubule proliferation was observed in human patients with moderately increased preload or afterload (mitral valve regurgitation, aortic stenosis). T-tubule growth was associated with larger Ca2+ transients, linked to upregulation of L-type Ca2+ channels, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients advanced the heart down the declining limb of the t-tubule-load relationship. This bell-shaped relationship was lost in the absence of electrical stimulation, indicating a key role of systolic stress in controlling t-tubule plasticity. In conclusion, modest augmentation of workload promotes compensatory increases in t-tubule density and Ca2+ cycling, whereas this adaptation is reversed in overloaded hearts during heart failure progression. KEY POINTS: Excised papillary muscle experiments demonstrated a bell-shaped relationship between cardiomyocyte t-tubule density and workload (preload or afterload), which was only present when muscles were electrically stimulated. The in vivo heart at baseline is positioned on the rising phase of this curve because moderate increases in preload (mice with brief aortic shunt surgery, patients with mitral valve regurgitation) resulted in t-tubule growth. Moderate increases in afterload (mice and patients with mild aortic banding/stenosis) similarly increased t-tubule density. T-tubule proliferation was associated with larger Ca2+ transients, with upregulation of the L-type Ca2+ channel, Na+-Ca2+ exchanger, mechanosensors and regulators of t-tubule structure. By contrast, marked elevation of cardiac load in rodents and patients placed the heart on the declining phase of the t-tubule-load relationship, promoting heart failure progression. The dependence of t-tubule structure on preload and afterload thus enables both compensatory and maladaptive remodelling, in rodents and humans.

5.
Biomed Pharmacother ; 174: 116507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38565059

RESUMO

Thioredoxin reductase 1 (TrxR1) has emerged as a promising target for cancer therapy. In our previous research, we discovered several new TrxR1 inhibitors and found that they all have excellent anti-tumor activity. At the same time, we found these TrxR1 inhibitors all lead to an increase in AKT phosphorylation in cancer cells, but the detailed role of AKT phosphorylation in TrxR1 inhibitor-mediated cell death remains unclear. In this study, we identified the combination of AKT and TrxR1 inhibitor displayed a strong synergistic effect in colon cancer cells. Furthermore, we demonstrated that the synergistic effect of auranofin (TrxR1 inhibitor) and MK-2206 (AKT inhibitor) was caused by ROS accumulation. Importantly, we found that ATM inhibitor KU-55933 can block the increase of AKT phosphorylation caused by auranofin, and exhibited a synergistic effect with auranofin. Taken together, our study demonstrated that the activation of ATM/AKT pathway is a compensatory mechanism to cope with ROS accumulation induced by TrxR1 inhibitor, and synergistic targeting of TrxR1 and ATM/AKT pathway is a promising strategy for treating colon cancer.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Auranofina , Neoplasias do Colo , Sinergismo Farmacológico , Compostos Heterocíclicos com 3 Anéis , Proteínas Proto-Oncogênicas c-akt , Pironas , Espécies Reativas de Oxigênio , Transdução de Sinais , Tiorredoxina Redutase 1 , Humanos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/antagonistas & inibidores , Auranofina/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos Heterocíclicos com 3 Anéis/farmacologia , Linhagem Celular Tumoral , Fosforilação/efeitos dos fármacos , Morfolinas/farmacologia , Células HCT116
6.
Life Sci ; 345: 122577, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38521387

RESUMO

BACKGROUND: Central hypothyroidism (CH) is characterized by low T4 levels and reduced levels or bioactivity of circulating TSH. However, there is a lack of studies on CH-related intestinal maldevelopment. In particular, the roles of TH and TSH/TSHR signaling in CH-related intestinal maldevelopment are poorly understood. Herein, we utilized Tshr-/- mice as a congenital hypothyroidism model with TH deprival and absence of TSHR signaling. METHODS: The morphological characteristics of intestines were determined by HE staining, periodic acid-shiff staining, and immunohistochemical staining. T4 was administrated into the offspring of homozygous mice from the fourth postnatal day through weaning or administrated after weaning. RT-PCR was used to evaluate the expression of markers of goblet cells and intestinal digestive enzymes. Single-cell RNA-sequencing analysis was used to explore the cell types and gene profiles of metabolic alternations in early-T4-injected Tshr-/- mice. KEY FINDINGS: Tshr deletion caused significant growth retardation and intestinal maldevelopment, manifested as smaller and more slender small intestines due to reduced numbers of stem cells and differentiated epithelial cells. Thyroxin supplementation from the fourth postnatal day, but not from weaning, significantly rescued the abnormal intestinal structure and restored the decreased number of proliferating intestinal cells in crypts of Tshr-/- mice. Tshr-/- mice with early-life T4 injections had more early goblet cells and impaired metabolism compared to Tshr+/+ mice. SIGNIFICANCE: TH deprival leads to major defects of CH-associated intestinal dysplasia while TSH/TSHR signaling deficiency promotes the differentiation of goblet cells and impairs nutrition metabolism.


Assuntos
Hipotireoidismo , Hormônios Tireóideos , Tireotropina , Animais , Camundongos , Hipotireoidismo/complicações , Hipotireoidismo/metabolismo , Receptores Acoplados a Proteínas G , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Transdução de Sinais , Hormônios Tireóideos/metabolismo , Intestinos/patologia
7.
Signal Transduct Target Ther ; 9(1): 53, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433280

RESUMO

NF-κB signaling has been discovered for nearly 40 years. Initially, NF-κB signaling was identified as a pivotal pathway in mediating inflammatory responses. However, with extensive and in-depth investigations, researchers have discovered that its role can be expanded to a variety of signaling mechanisms, biological processes, human diseases, and treatment options. In this review, we first scrutinize the research process of NF-κB signaling, and summarize the composition, activation, and regulatory mechanism of NF-κB signaling. We investigate the interaction of NF-κB signaling with other important pathways, including PI3K/AKT, MAPK, JAK-STAT, TGF-ß, Wnt, Notch, Hedgehog, and TLR signaling. The physiological and pathological states of NF-κB signaling, as well as its intricate involvement in inflammation, immune regulation, and tumor microenvironment, are also explicated. Additionally, we illustrate how NF-κB signaling is involved in a variety of human diseases, including cancers, inflammatory and autoimmune diseases, cardiovascular diseases, metabolic diseases, neurological diseases, and COVID-19. Further, we discuss the therapeutic approaches targeting NF-κB signaling, including IKK inhibitors, monoclonal antibodies, proteasome inhibitors, nuclear translocation inhibitors, DNA binding inhibitors, TKIs, non-coding RNAs, immunotherapy, and CAR-T. Finally, we provide an outlook for research in the field of NF-κB signaling. We hope to present a stereoscopic, comprehensive NF-κB signaling that will inform future research and clinical practice.


Assuntos
NF-kappa B , Fosfatidilinositol 3-Quinases , Humanos , Imunoterapia , NF-kappa B/genética , Transdução de Sinais/genética
8.
Clin Transl Oncol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512449

RESUMO

PURPOSE: Small bowel adenocarcinoma (SBA) is a rare malignancy of the gastrointestinal tract, and its unique location within the small intestine presents difficulties in obtaining tissue samples from the lesions. This limitation hinders the research and development of effective clinical treatment methods. Circulating tumor DNA (ctDNA) analysis holds promise as an alternative approach for investigating SBA and guiding treatment decisions, thereby improving the prognosis of SBA. METHODS: Between January 2017 and August 2021, a total of 336 tissue or plasma samples were obtained and the corresponding mutation status in tissue or blood was evaluated with NGS. RESULTS AND CONCLUSIONS: The study found that in SBA tissues, the most commonly alternated genes were TP53, KRAS, and APC, and the most frequently affected pathways were RTK-RAS-MAPK, TP53, and WNT. Notably, the RTK-RAS-MAPK pathway was identified as a potential biomarker that could be targeted for treatment. Then, we validated the gene mutation profiling of ctDNA extracted from SBA patients exhibited the same characteristics as tissue samples for the first time. Subsequently, we applied ctDNA analysis on a terminal-stage patient who had shown no response to previous chemotherapy. After detecting alterations in the RTK-RAS-MAPK pathway in the ctDNA, the patient was treated with MEK + EGFR inhibitors and achieved a tumor shrinkage rate of 76.33%. Our study utilized the largest Chinese SBA cohort to uncover the molecular characteristics of this disease, which might facilitate clinical decision making for SBA patients.

9.
Animals (Basel) ; 14(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473070

RESUMO

With the increase in breeding density of Exopalaemon carinicauda, appendage breakage may occur, which seriously affects survival and economic benefits. To study the limb regeneration process of E. carinicauda, we induced autotomy of the pereopods. After a period of time, wound swelling disappeared, the pigment gradually accumulated, and a tawny film subsequently formed in the wound. The healing period of the wound occurred 24 h after autotomy, and the blastema formation stage occurred 48 h after autotomy. After 4 days of cutting, the limb buds began to differentiate, grow, and expand rapidly, and this process lasted approximately 15 days. Microscopic observations revealed significant changes in the type and number of associated cells including outer epithelial cells, granulocytes, embryonic cells, columnar epidermal cells, elongated cells, and blastoma cells, during the process from limb fracture to regeneration. A comparative transcriptome analysis identified 1415 genes differentially expressed between the J0h (0 h post autotomy) and J18h (18 h post autotomy), and 3952 and 4366 differentially expressed genes for J0 and J14d (14 days post autotomy) and J18h and J14d, respectively. Some of these genes may be related to muscle growth or molting, as indicated by the presence of troponin C, chitinase, actin, innexin, and cathepsin L. As a functional gene involved in epidermal formation, the mRNA expression level of the innexin inx2 in the pereopod of E. carinicauda changed significantly in the experimental groups (p < 0.05). The results of this study contribute to existing knowledge of regeneration mechanisms in crustaceans.

10.
Environ Toxicol Pharmacol ; 106: 104385, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340909

RESUMO

Generated from plastics, microplastics (MPs) and nanoplastics (NPs) are difficult to completely degrade in the natural environment, which can accumulate in almost all lives. Liver is one of the main target organs. In this study, HepG2 and L02 cells were exposed to 0-50 µg/mL polystyrene (PS)-NPs to investigate the mechanism of mitochondrial damage and inflammation. The results showed mitochondria damage and inflammatory caused by NPs, and it can be inhibited by N-acetyl-L-cysteine (NAC). In addition, reactive oxygen species (ROS) activated nuclear factor erythroid-derived factor 2-related factor (Nrf2) pathway. Nrf2 siRNA exacerbated the injury, suggesting Nrf2 plays a protective role. Moreover, p62 siRNA increased ROS and mitochondrial damage by inhibiting Nrf2, but didn't affect the inflammation. In conclusion, Nrf2 was activated by ROS and played a protective role in PS-NPs-mediated hepatotoxicity. This study supplemented the data of liver injury caused by PS-NPs, providing a basis for the safe disposal of plastics.


Assuntos
Plásticos , Poliestirenos , Humanos , Poliestirenos/toxicidade , Células Hep G2 , Microplásticos , Fator 2 Relacionado a NF-E2 , Espécies Reativas de Oxigênio , Estresse Oxidativo , Inflamação/induzido quimicamente , RNA Interferente Pequeno
11.
World J Pediatr ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367140

RESUMO

BACKGROUND: Diarrhea is a common complication of hematopoietic stem cell transplantation (HSCT) and is associated with substantial morbidity, but its etiology is often unknown. Etiologies of diarrhea in this population include infectious causes, chemotherapy- or medication-induced mucosal injury and graft-versus-host disease (GVHD). Distinguishing these potential causes of diarrhea is challenging since diarrheal symptoms are often multifactorial, and the etiologies often overlap in transplant patients. The objectives of this study were to evaluate whether the FilmArray gastrointestinal (GI) panel would increase diagnostic yield and the degree to which pre-transplantation colonization predicts post-transplantation infection. METHODS: From November 2019 to February 2021, a total of 158 patients undergoing HSCT were prospectively included in the study. Stool specimens were obtained from all HSCT recipients prior to conditioning therapy, 28 ± 7 days after transplantation and at any new episode of diarrhea. All stool samples were tested by the FilmArray GI panel and other clinical microbiological assays. RESULTS: The primary cause of post-transplantation diarrhea was infection (57/84, 67.86%), followed by medication (38/84, 45.24%) and GVHD (21/84, 25.00%). Ninety-five of 158 patients were colonized with at least one gastrointestinal pathogen before conditioning therapy, and the incidence of infectious diarrhea was significantly higher in colonized patients (47/95, 49.47%) than in non-colonized patients (10/63, 15.87%) (P < 0.001). Fourteen of 19 (73.68%) patients who were initially colonized with norovirus pre-transplantation developed a post-transplantation norovirus infection. Twenty-four of 62 (38.71%) patients colonized with Clostridium difficile developed a diarrheal infection. In addition, FilmArray GI panel testing improved the diagnostic yield by almost twofold in our study (55/92, 59.78% vs. 30/92, 32.61%). CONCLUSIONS: Our data show that more than half of pediatric patients who were admitted for HSCT were colonized with various gastrointestinal pathogens, and more than one-third of these pathogens were associated with post-transplantation diarrhea. In addition, the FilmArray GI panel can increase the detection rate of diarrheal pathogens in pediatric HSCT patients, but the panel needs to be optimized for pathogen species, and further studies assessing its clinical impact and cost-effectiveness in this specific patient population are also needed.

12.
Heliyon ; 10(3): e24336, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38318072

RESUMO

Background: Qing-Jin-Hua-Tan decoction (QJHTD) is a classic traditional Chinese medicine (TCM) prescription that first appeared in the ancient book Yi-Xue-Tong-Zhi. QJHTD has shown effectiveness for treating chronic obstructive pulmonary disease (COPD), although its mechanisms of action are still perplexing. The molecular mechanisms underlying the curative effects of QJHTD on COPD is worth exploring. Methods: In vitro antiapoptotic and antiinflammatory activities of QJHTD were evaluated using cell viability, proliferation, apoptosis rate, and expression of IL-1ß and TNF-α in BEAS-2B and RAW264.7 cells challenged with cigarette smoke (CS) extract (CSE) and lipopolysaccharide (LPS). In vivo therapeutic activities of QJHTD were evaluated using respiratory parameters (peak inspiratory flow (PIFb) and peak expiratory flow (PEFb) values), histopathology (mean linear intercept, MLI), and proinflammatory cytokine (IL-1ß and TNF-α) and cleaved caspase-3 (c-Casp3) levels in the lung tissue of CS-LPS-exposed BALB/c mice. Network pharmacology-based prediction, transcriptomic analysis, and metabolic profiling were employed to investigate the signaling molecules and metabolites pertinent to the anti-COPD action of QJHTD. Results: Increased cell viability and proliferation with decreased apoptosis rate and proinflammatory cytokine expression were noted after QJHTD intervention. QJHTD administration elevated PEFb and PIFb values, reduced MLI, and inhibited IL-1ß, TNF-α, and c-Casp3 expression in vivo. Integrated network pharmacology-transcriptomics revealed that suppressing inflammatory signals (IL-1ß, IL-6, TNF, IκB-NF-κB, TLR, and MAPK) and apoptosis contributed to the anti-COPD property of QJHTD. Metabolomic profiling unveiled prominent roles for the suppression of apoptosis and sphingolipid (SL) metabolism and the promotion of choline (Ch) metabolism in the anti-COPD effect of QJHTD. Integrative transcriptomics-metabolomics unraveled the correlation between SL metabolism and apoptosis. In silico molecular docking revealed that acacetin, as an active compound in QJHTD, could bind with high affinity to MEK1, MEK2, ERK1, ERK2, Bcl2, NF-κB, and alCDase target proteins. Conclusion: The therapeutic effect of QJHTD on COPD is dependent on regulating inflammatory signals and apoptosis-directed SL metabolism. These findings provide deeper insights into the molecular mechanism of action of QJHTD against COPD and justify its theoretical promise in novel pharmacotherapy for this multifactorial disease.

13.
Exp Brain Res ; 242(4): 869-878, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38421411

RESUMO

Ischemic stroke is one of the most vital causes of high neurological morbidity and mortality in the world. Preconditioning exercise is considered as the primary prevention of stroke to resistance to subsequent injury. We tried to research the underlying biological mechanisms of this exercise. Forty-two SD rats were randomly divided into three groups: middle cerebral artery occlusion (MCAO) group, exercise group with MCAO (EX + MCAO) group, and sham group, with 14 rats in each group. The EX + MCAO group underwent exercise preconditioning for 3 weeks before occlusion, and the other two groups were fed and exercised normally. After 3 weeks, MCAO model was made by thread plug method in the EX + MCAO group and MCAO group. After successful modeling, the Longa scale was used to evaluate the neurological impairment of rats at day 0, day 1, and day 2. The rats in each group were killed on the third day after modeling. TTC staining measured the infarct volume of each group. The morphology and apoptosis of cortical cells were observed by HE and Tunel staining. Three rats in each group underwent high-throughput sequencing. Bioinformatic analysis was used to find the deferentially expressed genes (DEGs) and predict the transcription factor binding sites (TFBS) of the next-generation sequencing results. Gene enrichment (GSEA) was used to analyze potential functional genes and their corresponding signaling pathways. The Longa scale showed EX + MCAO group had the neurological function better than the modeling group (P < 0.001). TTC staining showed that the infarct size of EX + MCAO group was less than MCAO group (P < 0.05). HE and Tunel staining showed that the cells in the EX + MCAO group and the sham group had normal morphology and fewer apoptotic cells than MCAO group. A new gene named 7994 was discovered and TFBS of this gene was predicted, which could interact with key genes such as Foxd3, Foxa2, NR4A2, SP1, CEBPA, and SOX10. GSEA showed that EX + MCAO group could promote and regulate angiogenesis and apoptosis through PI3K-AKT pathway. Preconditioning exercise could improve nerve function and reduce infarct size in rats. The underlying mechanism is to regulate the PI3K-AKT pathway through several key genes, promote cerebral angiogenesis, and reduce apoptosis.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Animais , Ratos Sprague-Dawley , AVC Isquêmico/prevenção & controle , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Infarto da Artéria Cerebral Média , Encéfalo/metabolismo , Proteínas Repressoras , Fatores de Transcrição Forkhead/metabolismo
14.
Artigo em Inglês | MEDLINE | ID: mdl-38409756

RESUMO

OBJECTIVE: To evaluate the safety and efficacy of capsular tension ring and capsular hook (CTR-CH) implantation in Marfan syndrome (MFS) patients with ectopia lentis (EL). SETTING: Eye and ENT Hospital of Fudan University. DESIGN: Retrospective propensity-score matched cohort study. METHODS: This study included MFS patients who had in-the-bag intraocular lens (IOL) implantation assisted by CTR-CH or modified capsular tension ring (MCTR). The safety analysis focused on the re-surgery rate. The efficacy analysis compared the best-corrected visual acuity (BCVA) and the incidence of laser capsulotomy after propensity score matching (PSM). RESULTS: This study encompassed 148 eyes that had the CTR-CH procedure and 162 eyes that received MCTR implantation. In the CTR-CH group, the median age at the time of surgery was 5 years old, with a mean follow-up duration of 1.81 ± 0.4 years. Five eyes (3.38%) required a second surgery due to retinal detachment (2, 1.35%), IOL decentration (2, 1.35%), and CH dislocation (1, 0.68%). The re-surgery rate was comparable to that of the MCTR group (P = 0.486). After PSM, a total of 108 patients were recruited in each group. Postoperative BCVA was significantly improved in both groups (both P < 0.001), but comparable between the groups (P = 0.057). The posterior capsular opacification took place earlier (P = 0.046), while the anterior capsular opacification required laser capsulotomy at a later stage (P = 0.037) compared to the MCTR group. CONCLUSIONS: The CTR-CH procedure was a feasible, safe, and efficient approach for managing EL in MFS patients.

15.
Int J Biol Sci ; 20(1): 249-264, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164168

RESUMO

Lung cancer is one of the most lethal diseases in the world. Although there has been significant progress in the treatment of lung cancer, there is still a lack of effective strategies for advanced cases. Lenvatinib, a multi-targeted tyrosine kinase inhibitor, has achieved much attention due to its antitumor properties. Nevertheless, the use of lenvatinib is restricted by the characteristics of poor efficacy and drug resistance. In this study, we assessed the effectiveness of lenvatinib combined with thioredoxin reductase 1 (TrxR1) inhibitors in human lung cancer cells. Our results indicate that the combination therapy involving TrxR1 inhibitors and lenvatinib exhibited significant synergistic antitumor effects in human lung cancer cells. Moreover, siTrxR1 also showed significant synergy with lenvatinib in lung cancer cells. Mechanically, we demonstrated that ROS accumulation significantly contributes to the synergism between lenvatinib and TrxR1 inhibitor auranofin. Furthermore, the combination of lenvatinib and auranofin can activate endoplasmic reticulum stress and JNK signaling pathways to achieve the goal of killing lung cancer cells. Importantly, combination therapy with lenvatinib and auranofin exerted a synergistic antitumor effect in vivo. To sum up, the combination therapy involving lenvatinib and auranofin may be a potential strategy for treating lung cancer.


Assuntos
Neoplasias Pulmonares , Tiorredoxina Redutase 1 , Humanos , Tiorredoxina Redutase 1/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Auranofina/farmacologia , Auranofina/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Morte Celular
16.
J Orthop Surg Res ; 19(1): 43, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184619

RESUMO

BACKGROUND: The purpose of this study was to investigate the influence of different residual meniscus volume on the biomechanics of tibiofemoral joint after discoid lateral meniscus (DLM) surgery by finite element analysis. METHODS: A knee joint model was established based on CT and MRI imaging data. The DLM model was divided into five regions according to conventional meniscectomy, with volumes of 15%, 15%, 15%, 15%, 15%, and 40% for each region. Additionally, the DLM model was divided into anterior and posterior parts to obtain ten regions. The DLM was resected according to the design scheme, and together with the intact discoid meniscus, a total of 15 models were obtained. Finite element analysis was conducted to assess shear and pressure trends on the knee joint. RESULTS: The study observed significant changes in peak shear stress and compressive stress in the lateral meniscus and lateral femur cartilage. As the meniscus volume decreased, there was an increase in these stresses. Specifically, when the meniscus volume reduced to 40%, there was a sharp increase in shear stress (302%) and compressive stress (152%) on the meniscus, as well as shear stress (195%) and compressive stress (157%) on the lateral femur cartilage. Furthermore, the model grouping results showed that preserving a higher frontal volume in the meniscus model provided better biomechanical advantages. CONCLUSION: The use of finite element analysis has demonstrated that preserving more than 55% of the meniscus volume is necessary to prevent a significant increase in joint stress, which can potentially lead to joint degeneration. Additionally, it is crucial to preserve the front volume of the DLM in order to achieve improved knee biomechanical outcomes.


Assuntos
Meniscos Tibiais , Articulação Tibiofemoral , Fenômenos Biomecânicos , Análise de Elementos Finitos , Meniscos Tibiais/diagnóstico por imagem , Meniscos Tibiais/cirurgia , Volume Residual , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38180644

RESUMO

Exosomes secreted by cancer-associated fibroblasts (CAFs) play a critical part in cancer progression. This study aimed to explore the effects of CAF-exosomes on gastric cancer (GC) cell metastasis. AGS and HGC-27 cells were treated with exosomes and cell viability, migration, and invasion were evaluated using Cell-Counting Kit-8 and Transwell assays. Exosome-regulated mRNAs were explored using quantitative real-time PCR. The relationship between interleukin (IL)32 and estrogen receptor 1 (ESR1) was evaluated using co-immunoprecipitation and dual-luciferase reporter assays. The results of this study show that CAF-derived exosomes promote GC cell viability, migration, and invasion. Exosome treatment increased the levels of IL32, which interacted with ESR1 and negatively regulated ESR1 levels. Rescue experiments were conducted to demonstrate that CAF-exosomes promoted biological behaviors of GC cells by upregulating IL32 and downregulating ESR1 expression. In conclusion, CAF-derived exosomes promote GC cell viability, migration, and invasion by elevating the IL32/ESR1 axis, suggesting a novel strategy for metastatic GC treatment.

18.
Pharmacol Ther ; 253: 108577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081519

RESUMO

Tenascin C (TNC), a glycoprotein that is abundant in the tumor extracellular matrix (ECM), is strongly overexpressed in tumor tissues but virtually undetectable in most normal tissues. Many TNC antibodies, peptides, aptamers, and nanobodies have been investigated as delivery vectors, including 20A1, α-A2, α-A3, α-IIIB, α-D, BC-2, BC-4 BC-8, 81C6, ch81C6, F16, FHK, Ft, Ft-NP, G11, G11-iRGD, GBI-10, 19H12, J1/TN1, J1/TN2, J1/TN3, J1/TN4, J1/TN5, NJT3, NJT4, NJT6, P12, PL1, PL3, R6N, SMART, ST2146, ST2485, TN11, TN12, TNFnA1A2-Fc, TNfnA1D-Fc, TNfnBD-Fc, TNFnCD-Fc, TNfnD6-Fc, TNfn78-Fc, TTA1, TTA1.1, and TTA1.2. In particular, BC-2, BC-4, 81C6, ch81C6, F16, FHK, G11, PL1, PL3, R6N, ST2146, TN11, and TN12 have been tested in human tissues. G11-iRGD and simultaneous multiple aptamers and arginine-glycine-aspartic acid (RGD) targeting (SMART) may be assessed in clinical trials because G11, iRGD and AS1411 (SMART components) are already in clinical trials. Many TNC-conjugate agents, including antibody-drug conjugates (ADCs), antibody fragment-drug conjugates (FDCs), immune-stimulating antibody conjugates (ISACs), and radionuclide-drug conjugates (RDCs), have been investigated in preclinical and clinical trials. RDCs investigated in clinical trials include 111In-DTPA-BC-2, 131I-BC-2, 131I-BC-4, 90Y-BC4, 131I81C6, 131I-ch81C6, 211At-ch81C6, F16124I, 131I-tenatumomab, ST2146biot, FDC 131I-F16S1PF(ab')2, and ISAC F16IL2. ADCs (including FHK-SSL-Nav, FHK-NB-DOX, Ft-NP-PTX, and F16*-MMAE) and ISACs (IL12-R6N and 125I-G11-IL2) may enter clinical trials because they contain components of marketed treatments or agents that were investigated in previous clinical studies. This comprehensive review presents historical perspectives on clinical advances in TNC-conjugate agents to provide timely information to facilitate tumor-targeting drug development using TNC.


Assuntos
Imunoconjugados , Tenascina , Humanos , Matriz Extracelular , Peptídeos , Imunoconjugados/uso terapêutico , Linhagem Celular Tumoral
19.
Oncogene ; 43(1): 47-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935976

RESUMO

ZFP36L1, which is a negative regulator of gene transcripts, has been proven to regulate the progression of several carcinomas. However, its role in sarcoma remains unknown. Here, by using data analyses and in vivo experiments, we found that ZFP36L1 inhibited the lung metastasis of osteosarcoma (OS). Knockdown of ZFP36L1 promoted OS cell migration by activating TGF-ß signaling and increasing SDC4 expression. Intriguingly, we observed a positive feedback loop between SDC4 and TGF-ß signaling. SDC4 protected TGFBR3 from matrix metalloproteinase (MMP)-mediated cleavage and therefore relieved the inhibition of TGF-ß signaling by soluble TGFBR3, while TGF-ß signaling positively regulated SDC4 transcription. We also proved that ZFP36L1 regulated SDC4 mRNA decay through adenylate-uridylate (AU)-rich elements (AREs) in its 3'UTR. Furthermore, treatment with SB431542 (a TGF-ß receptor kinase inhibitor) and MK2 inhibitor III (a MAPKAPK2 inhibitor that increases the ability of ZFP36L1 to degrade mRNA) dramatically inhibited OS lung metastasis, suggesting a promising therapeutic approach for the treatment of OS lung metastasis.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Humanos , Retroalimentação , Fator de Crescimento Transformador beta/metabolismo , Osteossarcoma/genética , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Pulmonares/genética , Linhagem Celular Tumoral , Fator 1 de Resposta a Butirato , Sindecana-4/metabolismo
20.
Pharm Biol ; 62(1): 2294331, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38126136

RESUMO

CONTEXT: Coix [Coix lacryma-jobi L. var. mayuen (Roman.) Stapf (Poaceae)], a crop of medicinal and edible significance, contains coixol, which has demonstrated anticancer properties. However, the limited solubility of coixol restricts its potential therapeutic applications. OBJECTIVE: This study prepared a water-soluble coixol-ß-cyclodextrin polymer (CDP) inclusion compound and evaluated its anticancer effect. MATERIALS AND METHODS: The coixol-CDP compound was synthesized through a solvent-stirring and freeze-drying technique. Its coixol content was quantified using HPLC, and its stability was tested under various conditions. The anticancer effects of the coixol-CDP compound (4.129, 8.259, 16.518, and 33.035 mg/L for 24, 48, and 72 h) on the proliferation of non-small cell lung cancer (NSCLC) A549 cells were evaluated using an MTT assay; cell morphology was examined by Hoechst nuclear staining; apoptosis and cell cycle was detected by flow cytometry; and the expression of apoptosis-related proteins was assessed by Western blots. RESULTS: The water-soluble coixol-CDP inclusion compound was successfully prepared with an inclusion ratio of 86.6% and an inclusion yield rate of 84.1%. The coixol content of the compound was 5.63% and the compound remained stable under various conditions. Compared to coixol alone, all 24, 48, and 72 h administrations with the coixol-CDP compound exhibited lower IC50 values (33.93 ± 2.28, 16.80 ± 1.46, and 6.93 ± 0.83 mg/L) in A549 cells; the compound also showed stronger regulatory effects on apoptosis-related proteins. DISCUSSION AND CONCLUSIONS: These findings offer a new perspective for the potential clinical application of Coix in NSCLC therapy and its future research.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Coix , Neoplasias Pulmonares , beta-Ciclodextrinas , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Polímeros/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , beta-Ciclodextrinas/farmacologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA